전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. J. Biochem. 98: 585-603.
    Pubmed
  2. Bizani, D. and A. Brandelli. 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. J. Appl. Microbiol. 93: 512-519.
    Pubmed CrossRef
  3. Bradford, M. M. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein -dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  4. Chehimi, S., F. Delalande, S. Sablé, M.-R. Hajlaoui, A. V. Dorsselaer, F. Limam, and A.-M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53:284-290.
    Pubmed CrossRef
  5. Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, et al. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247.
    Pubmed CrossRef
  6. Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000.
    Pubmed CrossRef
  7. Cladera-Olivera, F., G. R. Caron, and A. Brandelli. 2004. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 38: 251-256.
    Pubmed CrossRef
  8. Daeschel, M. A. 1992. Bacteriocins of lactic acid bacteria, pp. 57-79. In B. Ray and M. A. Daeschel (eds.). Food Biopreservatives of Microbial Origin. CRC Press, Boca Raton, Florida.
  9. Diep, D. B. and I. F. Nes. 2002. Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Curr. Drugs Target 3: 107-122.
    Pubmed CrossRef
  10. Gálvez, A., R. L. López, H. Abriouel, E. Valdivia, and N. B. Omar. 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28: 125-152.
    Pubmed CrossRef
  11. Hammami, I., A. Rhouma, B. Jaouadi, A. Rebai, and X. Nesme. 2009. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett. Appl. Microbiol. 48: 253-260.
    Pubmed CrossRef
  12. Hoover, D. G and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp 23-39. In D. G. Hoover and L. R. Steenson (eds.). Bacteriocins of Lactic Acid Bacteria. Academic Press, San Diago, California.
  13. Hoshonia, A.-M., N. Yamamoto, K. Otawa, C. Tada, and Y. Nakai. 2010. Isolation of bacteriocin substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 56: 151-161.
    Pubmed CrossRef
  14. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
    Pubmed PMC
  15. Joerger, R. D. 2003. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640647.
    Pubmed
  16. Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888.
    Pubmed CrossRef
  17. Kayalvizhi, N. and P. Gunasekaran. 2008. Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett. Appl. Microbiol. 47: 600607.
    Pubmed CrossRef
  18. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86.
    Pubmed
  19. Klein, C., C. Kaletta, N. Schnell, and K.-D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132-142.
    Pubmed PMC
  20. Korenblum, E., I. von der Weid, A. L. S. Santos, A. S. Rosado, G. V. Sebastián, C. M. L. M. Coutinho, et al. 2005. Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus H2O-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. J. Appl. Microbiol. 98: 667-675.
    Pubmed CrossRef
  21. Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins produced by Bacillus coagulans I4. Appl. Environ. Microbiol. 66: 5213-5220.
    Pubmed PMC CrossRef
  22. Lisboa, M. P., D. Bonatto, D. Bizani, J. A. Henriques, and A. Brandelli. 2006. Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int. Microbiol. 9: 111-116.
    Pubmed
  23. Maisnier-Patin, S., N. Deschamps, S. R. Tatini, and J. Richard. 1992. Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72: 249-263.
    CrossRef
  24. Martínez, M. A., O. D. Delgado, J. D. Breccia, M. D. Baigorí, and F. Siñeriz. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395.
    CrossRef
  25. Nicolas, G. G., G. LaPointe, and C. M. Lavoie. 2011. Production, purification, sequencing and activity spectra of mutacins D123.1 and F-59.1. BMC Microbiol. 11: 69.
    Pubmed PMC CrossRef
  26. Nissen-Meyer, J. and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67-77.
    CrossRef
  27. Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. van der Donk. 2011. Sublancin is not a lantibiotic but an Slinked glycopeptides. Nat. Chem. Biol. 7: 78-80.
    Pubmed PMC CrossRef
  28. Riazi, S., R. E. Wirawan, V. Badmaev, and M. L. Chikindas. 2009. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J. Appl. Microbiol. 106: 1370-1377.
    Pubmed CrossRef
  29. Risøen, P. A., P. Rønning, I. K. Hegna, and A.-B. Kolstø. 2004. Characterization of a broad range antimicrobial substance from Bacillus cereus. J. Appl. Microbiol. 96: 648-655.
    Pubmed CrossRef
  30. Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.
    Pubmed CrossRef
  31. Schägger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulphate polyacylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166:368-379.
    CrossRef
  32. Settanni, L. and A. Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121:123-138.
    Pubmed CrossRef
  33. Sharma, N., G. Kapoor, and B. Neopaney. 2006. Characterization of a new bacteriocin from a novel isolated strain of Bacillus lentus NG121. Antonie Van Leeuwenhoek 89: 337-343.
    Pubmed CrossRef
  34. Sitori, L. R., F. C. Olivera, D. M. Lorenzini, S. M. Tsai, and A. Brandelli. 2006. Purification and partial characterization of an antimicrobial peptide produced by Bacillus sp. strain P45, a bacterium from the Amazon basin fish Piaractus mesopotamicus. J. Gen. Appl. Microbiol. 52: 357-363.
    Pubmed CrossRef
  35. Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
    Pubmed CrossRef
  36. Tabbene, O., I. B. Slimene, F. Bouabdallah, M.-L. Mangoni, M.-C. Urdaci, and F. Limam. 2009. Production of antimethicillinresistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl. Biochem. Biotechnol. 157: 407-419.
    Pubmed CrossRef
  37. Xie, J., R. Zhang, C. Shang, and J. Guo. 2009. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol. 8: 5611-5619.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2012; 22(8): 1092-1100

Published online August 28, 2012 https://doi.org/10.4014/jmb.1110.10002

Copyright © The Korean Society for Microbiology and Biotechnology.

Properties of Bac W42, a Bacteriocin Produced by Bacillus subtilis W42 Isolated from Cheonggukjang

Salum Kindoli 1, Hwang A Lee 1 and Jeong Hwan Kim 1, 2*

1Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University, Jinju 660-701, Korea, 2Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Korea

Received: October 4, 2011; Accepted: April 1, 2012

Abstract

Ten Bacillus strains with antimicrobial activities were
isolated from Cheonggukjang produced at different parts
in Korea. They all inhibited Listeria monocytogenes ATCC
19111 and nine inhibited Bacillus cereus ATCC 14579.
Four isolates (W42, H27, SKE 12, and K21) showing
strong inhibiting activities were identified as B. subtilis.
B. subtilis W42 was the most inhibiting strain. The
antimicrobial activity of culture supernatant from B.
subtilis W42 was destroyed completely by proteinase K
treatment, indicating that a bacteriocin was the responsible
agent. The bacteriocin, Bac W42, was most stable at pH 7
and stable between pH 3-6 and 8-9. Bac W42 was stable
up to 80oC. BHI (brain heart infusion) and TSB (tryptic soy
broth) were the best media for the activity (320 AU/ml)
followed by LB (160 AU/ml). Bac W42 was partially
purified by column chromatographies. The specific activity
was increased from 1,151.2 AU/ml to 9,043.5 AU/ml and
the final yield was 26.3%. Bac W42 was 5.4 kDa in size as
determined by SDS-PAGE. Bac W42 showed bactericidal
activity against L. monocytogenes ATCC 19111.

Keywords: bacteriocin, Cheonggukjang, Bacillus subtilis, food preservative

References

  1. Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. J. Biochem. 98: 585-603.
    Pubmed
  2. Bizani, D. and A. Brandelli. 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. J. Appl. Microbiol. 93: 512-519.
    Pubmed CrossRef
  3. Bradford, M. M. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein -dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  4. Chehimi, S., F. Delalande, S. Sablé, M.-R. Hajlaoui, A. V. Dorsselaer, F. Limam, and A.-M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53:284-290.
    Pubmed CrossRef
  5. Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, et al. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247.
    Pubmed CrossRef
  6. Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000.
    Pubmed CrossRef
  7. Cladera-Olivera, F., G. R. Caron, and A. Brandelli. 2004. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 38: 251-256.
    Pubmed CrossRef
  8. Daeschel, M. A. 1992. Bacteriocins of lactic acid bacteria, pp. 57-79. In B. Ray and M. A. Daeschel (eds.). Food Biopreservatives of Microbial Origin. CRC Press, Boca Raton, Florida.
  9. Diep, D. B. and I. F. Nes. 2002. Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Curr. Drugs Target 3: 107-122.
    Pubmed CrossRef
  10. Gálvez, A., R. L. López, H. Abriouel, E. Valdivia, and N. B. Omar. 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28: 125-152.
    Pubmed CrossRef
  11. Hammami, I., A. Rhouma, B. Jaouadi, A. Rebai, and X. Nesme. 2009. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett. Appl. Microbiol. 48: 253-260.
    Pubmed CrossRef
  12. Hoover, D. G and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp 23-39. In D. G. Hoover and L. R. Steenson (eds.). Bacteriocins of Lactic Acid Bacteria. Academic Press, San Diago, California.
  13. Hoshonia, A.-M., N. Yamamoto, K. Otawa, C. Tada, and Y. Nakai. 2010. Isolation of bacteriocin substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 56: 151-161.
    Pubmed CrossRef
  14. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
    Pubmed KoreaMed
  15. Joerger, R. D. 2003. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640647.
    Pubmed
  16. Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888.
    Pubmed CrossRef
  17. Kayalvizhi, N. and P. Gunasekaran. 2008. Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett. Appl. Microbiol. 47: 600607.
    Pubmed CrossRef
  18. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86.
    Pubmed
  19. Klein, C., C. Kaletta, N. Schnell, and K.-D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132-142.
    Pubmed KoreaMed
  20. Korenblum, E., I. von der Weid, A. L. S. Santos, A. S. Rosado, G. V. Sebastián, C. M. L. M. Coutinho, et al. 2005. Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus H2O-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. J. Appl. Microbiol. 98: 667-675.
    Pubmed CrossRef
  21. Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins produced by Bacillus coagulans I4. Appl. Environ. Microbiol. 66: 5213-5220.
    Pubmed KoreaMed CrossRef
  22. Lisboa, M. P., D. Bonatto, D. Bizani, J. A. Henriques, and A. Brandelli. 2006. Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int. Microbiol. 9: 111-116.
    Pubmed
  23. Maisnier-Patin, S., N. Deschamps, S. R. Tatini, and J. Richard. 1992. Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72: 249-263.
    CrossRef
  24. Martínez, M. A., O. D. Delgado, J. D. Breccia, M. D. Baigorí, and F. Siñeriz. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395.
    CrossRef
  25. Nicolas, G. G., G. LaPointe, and C. M. Lavoie. 2011. Production, purification, sequencing and activity spectra of mutacins D123.1 and F-59.1. BMC Microbiol. 11: 69.
    Pubmed KoreaMed CrossRef
  26. Nissen-Meyer, J. and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67-77.
    CrossRef
  27. Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. van der Donk. 2011. Sublancin is not a lantibiotic but an Slinked glycopeptides. Nat. Chem. Biol. 7: 78-80.
    Pubmed KoreaMed CrossRef
  28. Riazi, S., R. E. Wirawan, V. Badmaev, and M. L. Chikindas. 2009. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J. Appl. Microbiol. 106: 1370-1377.
    Pubmed CrossRef
  29. Risøen, P. A., P. Rønning, I. K. Hegna, and A.-B. Kolstø. 2004. Characterization of a broad range antimicrobial substance from Bacillus cereus. J. Appl. Microbiol. 96: 648-655.
    Pubmed CrossRef
  30. Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.
    Pubmed CrossRef
  31. Schägger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulphate polyacylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166:368-379.
    CrossRef
  32. Settanni, L. and A. Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121:123-138.
    Pubmed CrossRef
  33. Sharma, N., G. Kapoor, and B. Neopaney. 2006. Characterization of a new bacteriocin from a novel isolated strain of Bacillus lentus NG121. Antonie Van Leeuwenhoek 89: 337-343.
    Pubmed CrossRef
  34. Sitori, L. R., F. C. Olivera, D. M. Lorenzini, S. M. Tsai, and A. Brandelli. 2006. Purification and partial characterization of an antimicrobial peptide produced by Bacillus sp. strain P45, a bacterium from the Amazon basin fish Piaractus mesopotamicus. J. Gen. Appl. Microbiol. 52: 357-363.
    Pubmed CrossRef
  35. Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.
    Pubmed CrossRef
  36. Tabbene, O., I. B. Slimene, F. Bouabdallah, M.-L. Mangoni, M.-C. Urdaci, and F. Limam. 2009. Production of antimethicillinresistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl. Biochem. Biotechnol. 157: 407-419.
    Pubmed CrossRef
  37. Xie, J., R. Zhang, C. Shang, and J. Guo. 2009. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol. 8: 5611-5619.