전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Boquet, E., A. Boronat, and A. Ramos-Cormenzana. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527-529.
    CrossRef
  2. De Muynck, W., N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136.
    CrossRef
  3. De Muynck, W., N. De Belle, and W. Verstraete. 2010. Antimicrobial mortar surface for the improvement of hygienic conditions. J. Appl. Microbiol. 108: 62-72.
    Pubmed CrossRef
  4. Diakumaku, E., A. A. Gorbushina, W. E. Krumbeina, L. Panina, and S. Soukharjevski. 1995. Black fungi in marble and limestones - an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ. 167: 295-304.
    CrossRef
  5. Do, J. G., H. Song, H. S. So, and Y. S. Soh. 2005. Antifungal effects of cement mortar with two types of organic antifungal agents. Cem. Concr. Res. 35: 371-376.
    CrossRef
  6. Fang, Z. D. 1988. Research Methods for Plant Disease, pp. 248-249. 3rd Ed. Chinese Agriculture Press, Beijing (in Chinese).
  7. Ghosh, P., S. Mandal, B. D. Chattopadhyaya, and S. Pal. 2005. Use of microorganisms to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983.
    CrossRef
  8. Ghosh, S., M. Biswas, and B. D. Chattopadhyaya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem.Concr. Comp. 31: 93-98.
    CrossRef
  9. Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangena. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36:230-235.
    CrossRef
  10. Lowenstein, H. A. and S. Weiner. 1988. On Biomineralization. Oxford University Press, New York.
  11. Nolan, E., P. A. M. Basheer, and A. E. Long. 1995. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr. Build Mater. 9: 267-272.
    CrossRef
  12. Pablo, H. P. and L. J. du Toit. 2006. Seedborne Cladosporium variabile and Stemphylium botryosum in spinach. J. Plant Dis. 90: 137-145.
    CrossRef
  13. Pangallo, D., K. Chovanová, A. Simonovicová, and P. Ferianc. 2009. Investigation of microbial community isolated from indoor artworks and air environment: Identification, biodegradative abilities, and DNA typing. Can. J. Microbiol. 55: 277-287.
    Pubmed CrossRef
  14. Park, J. M., S. J. Park, and S.-Y. Ghim. 2010. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39: 287-293.
  15. Park, S. J., N. Y. Lee, W. J. Kim, and S.-Y. Ghim. 2010. Application of bacteria isolated from Dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-221.
  16. Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S.-Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.
    Pubmed
  17. Park, S. K., J. H. J. Kim, J. W. Nam, H. D. Phan, and J. K. Kim. Development of anti-fungal mortar and concrete using zeolite and zeocarbon microcapsules. 2009. Cem. Concr. Comp. 31: 447-453.
    CrossRef
  18. Queener, S. W. and J. J. Capone. 1974. Simple method for preparation of homogeneous spore suspensions useful in industrial strain selection. Appl. Microbiol. 28: 498-500.
    Pubmed PMC
  19. Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using microorganism. ACI Mater. 98:3-9.
  20. Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132:171-181.
    CrossRef
  21. Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31:1563-1571.
    CrossRef
  22. Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial biomediated calcite precipitation for monumental stones conservation:Methods of evaluation. J. Microbiol. Methods 36: 139-145.
    CrossRef
  23. Th. Warscheid. and J. Braams. 2010. Biodeterioration of stone:A review. Int. Biodeterior. 46: 343-368.
  24. Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2012; 22(7): 1015-1020

Published online July 28, 2012 https://doi.org/10.4014/jmb.1112.12027

Copyright © The Korean Society for Microbiology and Biotechnology.

Application of Antifungal CFB to Increase the Durability of Cement Mortar

Jong-Myong Park 1, Sung-Jin Park 1, Wha-Jung Kim 2 and Sa-Youl Ghim 1*

1School of Life Sciences and Institute for Microorganisms, Kyungpook National University, Daegu 702-701, Korea, 2School of Architecture & Architectural Engineering, Kyungpook National University, Daegu 702-701, Korea

Received: December 15, 2011; Accepted: March 9, 2012

Abstract

Antifungal cement mortar or microbiological calcium
carbonate precipitation on cement surface has been
investigated as functional concrete research. However,
these research concepts have never been fused with each
other. In this study, we introduced the antifungal calciteforming
bacteria (CFB) Bacillus aryabhattai KNUC205,
isolated from an urban tunnel (Daegu, South Korea). The
major fungal deteriogens in urban tunnel, Cladosporium
sphaerospermum KNUC253, was used as a sensitive fungal
strain. B. aryabhattai KNUC205 showed CaCO3 precipitation
on B4 medium. Cracked cement mortar pastes were made
and neutralized by modified methods. Subsequently, the
mixture of B. aryabhattai KNUC205, conidiospore of C.
sphaerospermum KNUC253, and B4 agar was applied to
cement cracks and incubated at 18oC for 16 days. B.
aryabhattai KNUC205 showed fungal growth inhibition
against C. sphaerospermum. Furthermore, B. aryabhattai
KNUC205 showed crack remediation ability and water
permeability reduction of cement mortar pastes. Taken
together, these results suggest that the CaCO3 precipitation
and antifungal properties of B. aryabhattai KNUC205
could be used as an effective sealing or coating material
that can also prevent deteriorative fungal growth. This
study is the first application and evaluation research that
incorporates calcite formation with antifungal capabilities
of microorganisms for an environment-friendly and more
effective protection of cement materials. In this research,
the conception of microbial construction materials was
expanded.

Keywords: antifungal, calcite-forming bacteria, Cladosporium sphaerospermum, Bacillus aryabhattai, crack remediation, water permeability

References

  1. Boquet, E., A. Boronat, and A. Ramos-Cormenzana. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527-529.
    CrossRef
  2. De Muynck, W., N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136.
    CrossRef
  3. De Muynck, W., N. De Belle, and W. Verstraete. 2010. Antimicrobial mortar surface for the improvement of hygienic conditions. J. Appl. Microbiol. 108: 62-72.
    Pubmed CrossRef
  4. Diakumaku, E., A. A. Gorbushina, W. E. Krumbeina, L. Panina, and S. Soukharjevski. 1995. Black fungi in marble and limestones - an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ. 167: 295-304.
    CrossRef
  5. Do, J. G., H. Song, H. S. So, and Y. S. Soh. 2005. Antifungal effects of cement mortar with two types of organic antifungal agents. Cem. Concr. Res. 35: 371-376.
    CrossRef
  6. Fang, Z. D. 1988. Research Methods for Plant Disease, pp. 248-249. 3rd Ed. Chinese Agriculture Press, Beijing (in Chinese).
  7. Ghosh, P., S. Mandal, B. D. Chattopadhyaya, and S. Pal. 2005. Use of microorganisms to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983.
    CrossRef
  8. Ghosh, S., M. Biswas, and B. D. Chattopadhyaya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem.Concr. Comp. 31: 93-98.
    CrossRef
  9. Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangena. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36:230-235.
    CrossRef
  10. Lowenstein, H. A. and S. Weiner. 1988. On Biomineralization. Oxford University Press, New York.
  11. Nolan, E., P. A. M. Basheer, and A. E. Long. 1995. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr. Build Mater. 9: 267-272.
    CrossRef
  12. Pablo, H. P. and L. J. du Toit. 2006. Seedborne Cladosporium variabile and Stemphylium botryosum in spinach. J. Plant Dis. 90: 137-145.
    CrossRef
  13. Pangallo, D., K. Chovanová, A. Simonovicová, and P. Ferianc. 2009. Investigation of microbial community isolated from indoor artworks and air environment: Identification, biodegradative abilities, and DNA typing. Can. J. Microbiol. 55: 277-287.
    Pubmed CrossRef
  14. Park, J. M., S. J. Park, and S.-Y. Ghim. 2010. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39: 287-293.
  15. Park, S. J., N. Y. Lee, W. J. Kim, and S.-Y. Ghim. 2010. Application of bacteria isolated from Dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-221.
  16. Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S.-Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.
    Pubmed
  17. Park, S. K., J. H. J. Kim, J. W. Nam, H. D. Phan, and J. K. Kim. Development of anti-fungal mortar and concrete using zeolite and zeocarbon microcapsules. 2009. Cem. Concr. Comp. 31: 447-453.
    CrossRef
  18. Queener, S. W. and J. J. Capone. 1974. Simple method for preparation of homogeneous spore suspensions useful in industrial strain selection. Appl. Microbiol. 28: 498-500.
    Pubmed KoreaMed
  19. Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using microorganism. ACI Mater. 98:3-9.
  20. Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132:171-181.
    CrossRef
  21. Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31:1563-1571.
    CrossRef
  22. Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial biomediated calcite precipitation for monumental stones conservation:Methods of evaluation. J. Microbiol. Methods 36: 139-145.
    CrossRef
  23. Th. Warscheid. and J. Braams. 2010. Biodeterioration of stone:A review. Int. Biodeterior. 46: 343-368.
  24. Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166.