전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Bickers, D. R. and M. Athar. 2006. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126: 2565-2575.
    Pubmed CrossRef
  2. Breiman, A. and I. Camus. 2002. The involvement of mammalian and plant FK506-binding proteins (FKBPs) in development. Transgenic Res. 11: 321-335.
    Pubmed CrossRef
  3. Dietz, G. P. 2010. Cell-penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr. Pharm. Biotechol. 11: 167-174.
    Pubmed CrossRef
  4. Dunlop, E. A. and A. R. Tee. 2009. Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cell Signal. 21: 827-835.
    Pubmed CrossRef
  5. Floyd, R. A. 1990. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4: 2587-2597.
    Pubmed
  6. Garcia, J. A. and D. Danielpour. 2008. Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol. Cancer Ther. 7: 1347-1354.
    Pubmed PMC CrossRef
  7. Grilli, M. and M. Memo. 1999. Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ. 6: 22-27.
    Pubmed CrossRef
  8. Grilli, M. and M. Memo. 1999. Nuclear factor-kappaB/Rel proteins: A point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem. Pharmacol. 57:1-7.
    CrossRef
  9. Hyun, C. K., I. Y. Kim, and S. C. Frost. 2004. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 134: 3257-3263.
    Pubmed
  10. Igarashi, K., K. Yoshioka, K. Mizutani, M. Miyakoshi, T. Murakami, and T. Akizawa. 2006. Blood pressure-depressing activity of a peptide derived from silkworm fibroin in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 70: 517-520.
    Pubmed CrossRef
  11. Kang, C. B., H. Ye, S. Dhe-Paganon, and H. S. Yoon. 2008. FKBP family proteins: Immunophilins with versatile biological functions. Neurosignals 16: 318-325.
    Pubmed CrossRef
  12. Kim, J. Y., J. Y. Choi, J. H. Jeong, E. S. Jang, A. S. Kim, S. G. Kim, et al. 2010. Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells. BMB Rep. 43: 52-56.
    Pubmed CrossRef
  13. Kim, S. Y., H. J. Jeong, D. W. Kim, M. J. Kim, J. J. An, E. J. Sohn, et al. 2011. Transduced PEP-1-FK506BP inhibits the inflammatory response in the Raw 264.7 cell and mouse models. Immunobiology 216: 771-781.
    Pubmed CrossRef
  14. Kim, S. Y., E. J. Sohn, D. W. Kim, H. J. Jeong, M. J. Kim, H. W. Kang, et al. 2011. Transduced PEP-1-FK506BP ameliorates atopic dermatitis in NC/Nga mice. J. Invest. Dermatol. 131:1477-1485.
    Pubmed CrossRef
  15. Lee, S. H., H. J. Jeong, D. W. Kim, E. J. Sohn, M. J. Kim, D. S. Kim, et al. 2010. Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins. BMB Rep. 43: 561-566.
    Pubmed CrossRef
  16. Long, C., L. G. Cook, S. L. Hamilton, G. Y. Wu, and B. M. Mitchell. 2007. FK506 binding protein 12/12.6 depletion increases endothelial nitric oxide synthase threonine 495 phosphorylation and blood pressure. Hypertension 49: 569-576.
    Pubmed CrossRef
  17. Lopez-Ilasaca, M., C. Schiene, G. Kullertz, T. Tradler, G. Fischer, and R. Wetzker. 1998. Effects of FK506-binding protein 12 and FK506 on autophosphorylation of epidermal growth factor receptor. J. Biol. Chem. 273: 9430-9434.
    Pubmed CrossRef
  18. Lu, S., X. Wang, Q. Lv, X. Hu, N. Uppal, F. Omenetto, and D. L. Kaplan. 2009. Stabilization of enzymes in silk film. Biomacromolecules 10: 1032-1042.
    Pubmed PMC CrossRef
  19. Mates, J. M. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 83:83-104.
    CrossRef
  20. Nathan, C. 2002. Points of control in inflammation. Nature 420:846-852.
    Pubmed CrossRef
  21. Schiene-Fischer, C. and C. Yu. 2001. Receptor accessory folding helper enzymes: The functional role of peptidyl prolyl cis/trans isomerase. FEBS Lett. 495: 1-6.
    CrossRef
  22. Schwarze, S. R., K. A. Hruska, and S. F. Dowdy. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol. 10: 290-295.
    CrossRef
  23. Sohn, E. J., D. W. Kim, Y. N. Kim, S. M. Kim, S. S. Lim, T. C. Kang, et al. 2011. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein. Biochem. Biophys. Res. Commun. 406: 336-340.
    Pubmed CrossRef
  24. Song, H. Y., J. A. Lee, S. M. Ju, K. Y. Yoo, M. H. Won, H. J. Kwon, et al. 2008. Topical transduction of superoxide dismutase mediated by HIV-1 Tat protein transduction domain ameliorates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice. Biochem. Pharmacol. 75: 1348-1357.
    Pubmed CrossRef
  25. Stanley, P. L., S. Steiner, and M. Havens. 1991. Tramposch KM: Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol. 4: 262-271.
    CrossRef
  26. Wadia, J. S. and S. F. Dowdy. 2002. Protein transduction technology. Curr. Opin. Biotechnol. 13: 52-56.
    CrossRef
  27. Wadia, J. S. and S. F. Dowdy. 2003. Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. 4: 97-104.
    Pubmed CrossRef
  28. Wang, T., P. K. Donahoe, and A. S. Zervos. 1994. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265: 674-676.
    Pubmed CrossRef
  29. Yamaguchi, T., A. Kurisaki, N. Yamakawa, K. Minakuchi, and H. Sugino. 2006. FKBP12 functions as an adaptor of the Smad7-Smurf1 complex on activin type I receptor. J. Mol. Endocrinol. 36: 569-579.
    Pubmed CrossRef
  30. Zhou, H., A. Lin, Z. Gu, S. Chen, N. H. Park, and R. Chiu. 2000. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced cJun N-terminal kinase (JNK) phosphatase renders immortalized or transformed epithelial cells refractory to TPA-inducible JNK activity. J. Biol. Chem. 275: 22868-22875.
    Pubmed CrossRef

Article

Research article

J. Microbiol. Biotechnol. 2012; 22(4): 494-500

Published online April 28, 2012 https://doi.org/10.4014/jmb.1111.11024

Copyright © The Korean Society for Microbiology and Biotechnology.

Enhancement of Anti-Inflammatory Activity of PEP-1-FK506 Binding Protein by Silk Fibroin Peptide

Dae Won Kim 1, Hyun Sook Hwang 1, Duk-Soo Kim 2, Seung Hoon Sheen 3, Dong Hwa Heo 3, Gyojun Hwang 3, Suk Hyung Kang 3, HaeYong Kweon 4, You-Young Jo 4, Seok Woo Kang 4, Kwang-Gill Lee 4, Jinseu Park 1, Won Sik Eum 1, Yong-Jun Cho 3 and Soo Young Choi 1*

1Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea. , 2Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090, Korea. , 3Department of Neurosurgery, Hallym University Medical Center, Chuncheon 200-704, Korea, , 4Sericultural & Agicultural Materials Division, National Academy of Agricultural Science, RDA, Suwon 441-100, Korea

Received: November 10, 2011; Accepted: December 8, 2011

Abstract

Silk fibroin (SF) peptide has been traditionally used as a
treatment for flatulence, spasms, and phlegm. In this study,
we examined whether SF peptide enhanced the antiinflammatory
effect of PEP-1-FK506 binding protein
(PEP-1-FK506BP) through comparing the anti-inflammatory
activities of SF peptide and/or PEP-1-FK506BP. In the
presence or absence of SF peptide, transduction levels of
PEP-1-FK506BP into HaCaT cells and mice skin and
anti-inflammatory activities of PEP-1-FK506BP were
identified by Western blot and histological analyses. SF
peptide alone effectively reduced both mice ear edema
and the elevated levels of cyclooxygenase-2, interleukin-6
and -1β, and tumor necrosis factor-α, showing similar
anti-inflammatory effect to that of PEP-1-FK506BP.
Furthermore, co-treatment with SF peptide and PEP-1-
FK506BP exhibited more enhanced anti-inflammatory
effects than the samples treated with SF peptides or PEP-
1-FK506BP alone, suggesting the possibility that SF
peptide and PEP-1-FK506BP might interact with each
other. Moreover, the transduction data demonstrated that
SF peptide did not affect the transduction of PEP-1-
FK506BP into HaCaT cells and mice skin, indicating that
the improvement of anti-inflammatory effect of PEP-1-
FK506BP was not caused by enhanced transduction of
PEP-1-FK506BP. Thus, these results suggest the possibility
that co-treatment with SF peptide and PEP-1-FK506BP may
be exploited as a useful therapy for various inflammationrelated
diseases.

Keywords: Inflammation,, PEP-1-FK506BP, Protein transduction, Reactive oxygen species, Silk fibroin peptide, TPA

References

  1. Bickers, D. R. and M. Athar. 2006. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126: 2565-2575.
    Pubmed CrossRef
  2. Breiman, A. and I. Camus. 2002. The involvement of mammalian and plant FK506-binding proteins (FKBPs) in development. Transgenic Res. 11: 321-335.
    Pubmed CrossRef
  3. Dietz, G. P. 2010. Cell-penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr. Pharm. Biotechol. 11: 167-174.
    Pubmed CrossRef
  4. Dunlop, E. A. and A. R. Tee. 2009. Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cell Signal. 21: 827-835.
    Pubmed CrossRef
  5. Floyd, R. A. 1990. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4: 2587-2597.
    Pubmed
  6. Garcia, J. A. and D. Danielpour. 2008. Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol. Cancer Ther. 7: 1347-1354.
    Pubmed KoreaMed CrossRef
  7. Grilli, M. and M. Memo. 1999. Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ. 6: 22-27.
    Pubmed CrossRef
  8. Grilli, M. and M. Memo. 1999. Nuclear factor-kappaB/Rel proteins: A point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem. Pharmacol. 57:1-7.
    CrossRef
  9. Hyun, C. K., I. Y. Kim, and S. C. Frost. 2004. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 134: 3257-3263.
    Pubmed
  10. Igarashi, K., K. Yoshioka, K. Mizutani, M. Miyakoshi, T. Murakami, and T. Akizawa. 2006. Blood pressure-depressing activity of a peptide derived from silkworm fibroin in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 70: 517-520.
    Pubmed CrossRef
  11. Kang, C. B., H. Ye, S. Dhe-Paganon, and H. S. Yoon. 2008. FKBP family proteins: Immunophilins with versatile biological functions. Neurosignals 16: 318-325.
    Pubmed CrossRef
  12. Kim, J. Y., J. Y. Choi, J. H. Jeong, E. S. Jang, A. S. Kim, S. G. Kim, et al. 2010. Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells. BMB Rep. 43: 52-56.
    Pubmed CrossRef
  13. Kim, S. Y., H. J. Jeong, D. W. Kim, M. J. Kim, J. J. An, E. J. Sohn, et al. 2011. Transduced PEP-1-FK506BP inhibits the inflammatory response in the Raw 264.7 cell and mouse models. Immunobiology 216: 771-781.
    Pubmed CrossRef
  14. Kim, S. Y., E. J. Sohn, D. W. Kim, H. J. Jeong, M. J. Kim, H. W. Kang, et al. 2011. Transduced PEP-1-FK506BP ameliorates atopic dermatitis in NC/Nga mice. J. Invest. Dermatol. 131:1477-1485.
    Pubmed CrossRef
  15. Lee, S. H., H. J. Jeong, D. W. Kim, E. J. Sohn, M. J. Kim, D. S. Kim, et al. 2010. Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins. BMB Rep. 43: 561-566.
    Pubmed CrossRef
  16. Long, C., L. G. Cook, S. L. Hamilton, G. Y. Wu, and B. M. Mitchell. 2007. FK506 binding protein 12/12.6 depletion increases endothelial nitric oxide synthase threonine 495 phosphorylation and blood pressure. Hypertension 49: 569-576.
    Pubmed CrossRef
  17. Lopez-Ilasaca, M., C. Schiene, G. Kullertz, T. Tradler, G. Fischer, and R. Wetzker. 1998. Effects of FK506-binding protein 12 and FK506 on autophosphorylation of epidermal growth factor receptor. J. Biol. Chem. 273: 9430-9434.
    Pubmed CrossRef
  18. Lu, S., X. Wang, Q. Lv, X. Hu, N. Uppal, F. Omenetto, and D. L. Kaplan. 2009. Stabilization of enzymes in silk film. Biomacromolecules 10: 1032-1042.
    Pubmed KoreaMed CrossRef
  19. Mates, J. M. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 83:83-104.
    CrossRef
  20. Nathan, C. 2002. Points of control in inflammation. Nature 420:846-852.
    Pubmed CrossRef
  21. Schiene-Fischer, C. and C. Yu. 2001. Receptor accessory folding helper enzymes: The functional role of peptidyl prolyl cis/trans isomerase. FEBS Lett. 495: 1-6.
    CrossRef
  22. Schwarze, S. R., K. A. Hruska, and S. F. Dowdy. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol. 10: 290-295.
    CrossRef
  23. Sohn, E. J., D. W. Kim, Y. N. Kim, S. M. Kim, S. S. Lim, T. C. Kang, et al. 2011. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein. Biochem. Biophys. Res. Commun. 406: 336-340.
    Pubmed CrossRef
  24. Song, H. Y., J. A. Lee, S. M. Ju, K. Y. Yoo, M. H. Won, H. J. Kwon, et al. 2008. Topical transduction of superoxide dismutase mediated by HIV-1 Tat protein transduction domain ameliorates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice. Biochem. Pharmacol. 75: 1348-1357.
    Pubmed CrossRef
  25. Stanley, P. L., S. Steiner, and M. Havens. 1991. Tramposch KM: Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol. 4: 262-271.
    CrossRef
  26. Wadia, J. S. and S. F. Dowdy. 2002. Protein transduction technology. Curr. Opin. Biotechnol. 13: 52-56.
    CrossRef
  27. Wadia, J. S. and S. F. Dowdy. 2003. Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. 4: 97-104.
    Pubmed CrossRef
  28. Wang, T., P. K. Donahoe, and A. S. Zervos. 1994. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 265: 674-676.
    Pubmed CrossRef
  29. Yamaguchi, T., A. Kurisaki, N. Yamakawa, K. Minakuchi, and H. Sugino. 2006. FKBP12 functions as an adaptor of the Smad7-Smurf1 complex on activin type I receptor. J. Mol. Endocrinol. 36: 569-579.
    Pubmed CrossRef
  30. Zhou, H., A. Lin, Z. Gu, S. Chen, N. H. Park, and R. Chiu. 2000. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced cJun N-terminal kinase (JNK) phosphatase renders immortalized or transformed epithelial cells refractory to TPA-inducible JNK activity. J. Biol. Chem. 275: 22868-22875.
    Pubmed CrossRef