전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Arakane, Y. and D. Koga. 1999. Purification and characterization of a novel chitinase isozyme from yam tuber. Biosci. Biotechnol. Biochem. 63: 1895-1901.
    CrossRef
  2. Asaka, O. and M. Shoda. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilus RB14. Appl. Environ. Microbiol. 62: 397-404.
  3. Baker, K. F. and R. J. Cook. 1974. Biological Control of Plant Pathogens. American Phytopathological Society, St. Paul, MN.
  4. Bakker, P. A. H. M., C. M. J. Pieterse, and L. C. Van Loon. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243.
    Pubmed CrossRef
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitiation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  6. Brewer, M. T. and R. P. Larkin. 2005. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot. 24: 939-950.
    CrossRef
  7. Brurberg, M. B., I. F. Nes, and V. G. H. Eijsink. 1996. Comparative studies of chitinase A and B from Serratia marcescens. Microbiology 142: 1581-1589.
    Pubmed CrossRef
  8. Caruso, C., G. Chilosi, C. Caporale, L. Leonardi, L. Bertini, P. Margo, and V. Buonocore. 1999. Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci. 140: 107-120.
    CrossRef
  9. Chen, G. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the difference in their enzymatic and molecular properties. Plant Cell Physiol. 30: 987-998.
  10. Chittor, J. M., J. E. Leach, and F. F. White. 1999. Induction of peroxidase during defense against pathogens. In: Pathogenesisrelated Proteins in Plants. CRC Press, Boca Raton, FL.
  11. Cordero, M. J., D. Raventos, and B. San Segundo. 1992. Induction of PR-proteins in germinating maize seeds infected with the fungus Fusarium moniliforme. Physiol. Mol. Plant Pathol. 41: 189-200.
    CrossRef
  12. De Vleesschauwer, D., P. Cornelis, and M. Hofte. 2006. Redoxactive pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol. Plant Microbe Interact. 19: 1406-1419.
    Pubmed CrossRef
  13. Driss, F., M. Kallassy-Award, N. Zouari, and S. Jaoua. 2005. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J. Appl. Microbiol. 99: 945-953.
    Pubmed CrossRef
  14. Duzhak, A. B., Z. I. Panfilova, T. G. Duzhak, and E. A. Vasyunina. 2009. Extracellular chitinase of mutant superproducing strain Serratia marcescens M-1. Biochemistry 74: 257-263.
  15. Edreva, A. 2005. Pathogenesis-related proteins: Research progress in the last 15 years. Gen. Appl. Plant Physiol. 31: 105-124.
  16. Frank, J. A. and S. S. Leach. 1980. Comparison of tuberborne and soilborne inoculums in rhizoctonia disease of potato. Phytopathology 70: 51-53.
    CrossRef
  17. Fu, J. and B. Huang. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45: 105-114.
    CrossRef
  18. Gayoso, C., F. Pomar, F. Merino, and M. A. Bernal. 2004. Oxidative metabolism and phenolic compounds in Capsicum annuum L. var. annuum infected by Phytophthora capsici Leon. Sci. Hort. 102: 1-13.
    CrossRef
  19. Haran, S., H. Schickler, A. Oppenheim, and I. Chet. 1995. New components of the chitinolytic system of Trichoderma harzianum. Mycol. Res. 99: 441-446.
    CrossRef
  20. Jeger, M. J., G. A. Hide, P. H. J. F. Van Den Boogert, A. J. Termorshuizen, and P. Van Baarlen. 1996. Pathology and control of soil-borne fungal pathogens of potato. Potato Res. 39: 437-469.
    CrossRef
  21. Jung, W. J., K. N. An, Y. L. Jin, R. D. Park, K. T. Lim, K. Y. Kim, and T. H. Kim. 2003. Biological control of damping-off caused by Rhizoctonia solani using chitinase-producing Paenibacillus illinoisensis KJA-424. Soil Biol. Biochem. 35: 1261-1264.
    CrossRef
  22. Jung, W. J., Y. L. Jin, Y. C. Kim, K. Y. Kim, R. D. Park, and T. H. Kim. 2004. Inoculation of Paenibacillus illinoisensis alleviates root mortality, activates of lignifications-related enzymes, and induction of the isozymes in pepper plants infected by Phytophthora capsici. Biol. Control 30: 645-652.
    CrossRef
  23. Jung, W. J., F. Mabood, T. H. Kim, and D. Smith. 2007. Induction of pathogenesis-related proteins during biocontrol of Rhizoctonia solani with Pseudomonas aureofaciens in soybean (Glycine max L. Merr.) plants. Biocontrol 52: 895-904.
    CrossRef
  24. Jung, W. J., R. D. Park, F. Mabood, A. Souleimanov, and D. Smith. 2011. Effects of Pseudomonas aureofaciens 63-28 on defense responses in soybean plants infected by Rhizoctonia solani. J. Microbiol. Biotechnol. 21: 379-386
    Pubmed
  25. Kavino, M., S. Harish, N. Kumar, T. Saravanakumar Damodaran, K. Soorianathasundaram, and R. Samiyappan. 2007. Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol. Biochem. 39: 1087-1098.
    CrossRef
  26. Koga, D., Y. Sasaki, Y. Uchiumi, N. Hiral, Y. Arakane, and Y. Nagamatsu. 1997. Purification and characterization of Bombyx mori chitinases. Insect Biochem. Mol. Biol. 27: 757-767.
    CrossRef
  27. Kolattukudy, P. E., R. Mohan, M. A. Bajar, and B. A. Sherf. 1992. Plant peroxidase gene expression and function. Biochem. Soc. Trans. 20: 333-337.
    Pubmed
  28. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-
    Pubmed CrossRef
  29. Liu, M., Q. X. Cai, H. Z. Liu, B. H. Zhang, J. P. Yan, and Z. M. Yuan. 2002. Chitinolytic activity in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J. Appl. Microbiol. 58: 840-849.
  30. Lingappa, Y. and J. L. Lockwood. 1962. Chitin media for selective isolation and culture of Actinomycetes. Phytopathology 52: 317-323.
  31. Lumsden, R. D. and G. C. Papavizas. 1988. Biological control of soilborne plant pathogens. Am. J. Alter. Agric. 3: 98-101.
    CrossRef
  32. Magnin-Robert, M., P. Trotel-Aziz, D. Quantinet, and S. Biagianti. 2007. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3-glucanase activities under field conditions. Eur. J. Plant Pathol. 118: 43-57.
    CrossRef
  33. Mohammadi, M. and H. Kazemi. 2002. Change in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 162: 491-498.
    CrossRef
  34. Monreal, J. and E. T. Reese. 1969. The chitinase of Serratia marcescens. Can. J. Microbiol. 15: 689-696.
    Pubmed CrossRef
  35. Nguyen, V. N., Y. J. Kim, K. T. Oh, W. J. Jung, and R. D. Park. 2008. Antifungal activity of chitinases from Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9. Curr. Microbiol. 56: 28-32.
    Pubmed CrossRef
  36. Ohya, T., Y. Morimura, H. Saji, T. Mihara, and T. Ikawa. 1997. Purification and characterization of ascorbate peroxidase in roots of Japanese radish. Plant Sci. 125: 137-145.
    CrossRef
  37. Pan, S. Q., X. S. Ye, and J. Kue. 1989. Direct detection of β- 1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Anal. Biochem. 182: 136-140.
    CrossRef
  38. Paranidharan, V., A. Palaniswami, P. Vidhyasekaran, and R. Velazhahan. 2003. Induction of enzymatic scavengers of active oxygen species in rice in response to infection by Rhizoctonia solani. Acta Physiol. Plant. 25: 91-96.
    CrossRef
  39. Parry, D. W. 1990. Diseases of potato, pp. 276-280. In: Plant Pathology in Agriculture. Cambridge University Press, Cambridge.
  40. Patil, R. S., V. Ghormade, and M. V. Deshande. 2000. Chitinolytic enzymes: An exploration. Enzyme Microb. Technol. 26: 473-
    CrossRef
  41. Peumans, W. J., P. Proost, R. J. Swennen, and C. J. Van Dame. 2002. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. Plant Physiol. 130: 1063-1072.
    Pubmed PMC CrossRef
  42. Rao, D. H. and L. R. Gowda. 2008. Abundant class III acidic chitinase homologue in tamarind (Tamarindus indica) seed serves as the major storage protein. J. Agric. Food Chem. 56: 2175-2182.
    Pubmed CrossRef
  43. Reyes-Ramirez, A., B. I. Escudero-Abarca, G. Aguilar-Uscanga, P. M. Hayward-Jones, and J. E. Barboza-Corona. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69: 131-134.
    CrossRef
  44. Roby, D., K. Broglie, R. Cressman, P. Biddle, I. Chet, and R. Broglie. 1990. Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2: 999-1007.
    Pubmed PMC
  45. Santos, L. S., E. A. Olivera, M. D. Cunha, O. L. T. Machado, A. G. C. Neves-Ferreira, K. V. S. Fernandes, A. O. Carvalho, J. Perales, and V. M. Gomes. 2007. Expression of chitinase in Adenanthera pavonina seedlings. Physiol. Plant. 131: 80-88.
    Pubmed CrossRef
  46. Senthilkumar, M., V. Govindasamy, and K. Annapurna. 2007. Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr. Microbiol. 55: 25-29.
    Pubmed CrossRef
  47. Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda, Y. Yabuta, and K. Yoshimura. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305-1319.
    Pubmed CrossRef
  48. Shrestha, C. L., I. Ona, and S. Muthukridhnan. 2008. Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani. Eur. J. Plant Pathol. 120: 69-77.
    CrossRef
  49. Song, Y. S., D. J. Seo, B. R. Lee, and W. J. Jung. 2009. Expression patterns of enzymes in different tissues of oil seed rape (Brassica napus L.) seedling. J. Appl. Biol. Chem. 52: 51-
    CrossRef
  50. Taira, T., T. Ohnuma, T. Yamagami, Y. Aso, M. Ishiguro, and M. Ishihara. 2001. Antifungal activity of rye (Secale cereale) seed chitinases: The different binding manner of class I and class II chitinases to the fungal cell walls. Biosci. Biotechnol. Biochem. 66: 970-977.
    Pubmed CrossRef
  51. Thamthiankul, S., S. Suan-Ngay, S. Tantimavanich, and W. Panbangred. 2001. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl. Microbiol. Biotechnol. 56: 395-401.
    Pubmed CrossRef
  52. Trudel, J. and A. Asselin. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178: 362-366.
    CrossRef
  53. Van Loon, L. C., P. A. H. M. Baker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483.
    Pubmed CrossRef
  54. Vinetz, J. M., S. K. Dave, C. A. Specht, K. A. Brameld, B. Xu, R. Hayward, and D. A. Fidock. 1999. The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proc. Natl. Acad. Sci. USA 96: 1406114066.
    CrossRef
  55. Wakelin, A. M. and D. W. M. Leung. 2009. β-1,3-Glucanase activity in the stigma of healthy petunia flowers. Biol. Plant. 51: 69-74.
    CrossRef
  56. Yedidia, I., N. Benhamou, Y. Kapulnik, and I. Chet. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38: 863-873.
    CrossRef
  57. Yong, M. E. and P. A. Carroad. 1981. On continuous culture dilution rate. Can. J. Microbiol. 27: 142-144.
    Pubmed
  58. Zouari, N. and S. Jaoua. 1999. Production and characterization of metalloproteases synthesized concomitantly with δ-endotoxin by Bacillus thuringiensis subsp. kurstaki strain grown on gruelbased media. Enzyme Microb. Technol. 25: 364-371.
    CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2012; 22(3): 407-415

Published online March 28, 2012 https://doi.org/10.4014/jmb.1107.07027

Copyright © The Korean Society for Microbiology and Biotechnology.

Induction of Defense Response Against Rhizoctonia solani in Cucumber Plants by Endophytic Bacterium Bacillus thuringiensis GS1

Dong-Jun Seo 1, Dang-Minh-Chanh Nguyen 1, Yong-Su Song 1 and Woo-Jin Jung 1*

Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju 500-757, Korea

Received: July 13, 2011; Accepted: October 31, 2011

Abstract

An endophytic bacterium, Bacillus thuringiensis GS1, was
isolated from bracken (Pteridium aquilinum) and found to
have maximal production of chitinase (4.3 units/ml) at
5 days after culture. This study investigated the ability of
B. thuringiensis GS1 to induce resistance to Rhizoctonia
solani KACC 40111 (RS) in cucumber plants. Chitinase
activity was greatest in RS-treated plants at 4 days. β-1,3-
Glucanase activity was highest in GS1-treated plants at
5 days. Guaiacol peroxidase (GPOD) activity increased
continuously in all treated plants for 5 days. Ascorbate
peroxidase (APX) activity in RS-treated plants was increased
1.5-fold compared with the control at 4 days. Polyphenol
oxidase (PPO) activity in RS-treated plants was increased
1.5-fold compared with the control at 3 days. At 5 days
after treatment, activity staining revealed three bands
with chitinase activity (Ch1, Ch2, and Ch3) on SDSPAGE
of cucumber plants treated with GS1+RS, whereas
only one band was observed for RS-treated plants (Ch2).
One GPOD isozyme (Gp1) was also observed in response
to treatment with RS and GS1+RS at 4 days. One APX
band (Ap2) was present on the native-PAGE gel of the
control, and GS1- and GS1+RS-treated plants at 1 day.
PPO bands (Po1 and Po2) from RS- and GS1+RS-treated
plants were stronger than in the control and GS1-treated
plants upon native-PAGE at 5 days. Taken together, these
results indicate that the induction of PR proteins and
defense-related enzymes by B. thuringiensis GS1 might
have suppressed the damping-off caused by R. solani
KACC 40111 in cucumber plants.

Keywords: Endophytic bacteria, chitinase, β-1,3-glucanase, guaiacol-peroxidase, Rhizoctonia solani, Bacillus thuringiensis GS1

References

  1. Arakane, Y. and D. Koga. 1999. Purification and characterization of a novel chitinase isozyme from yam tuber. Biosci. Biotechnol. Biochem. 63: 1895-1901.
    CrossRef
  2. Asaka, O. and M. Shoda. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilus RB14. Appl. Environ. Microbiol. 62: 397-404.
  3. Baker, K. F. and R. J. Cook. 1974. Biological Control of Plant Pathogens. American Phytopathological Society, St. Paul, MN.
  4. Bakker, P. A. H. M., C. M. J. Pieterse, and L. C. Van Loon. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243.
    Pubmed CrossRef
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitiation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  6. Brewer, M. T. and R. P. Larkin. 2005. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot. 24: 939-950.
    CrossRef
  7. Brurberg, M. B., I. F. Nes, and V. G. H. Eijsink. 1996. Comparative studies of chitinase A and B from Serratia marcescens. Microbiology 142: 1581-1589.
    Pubmed CrossRef
  8. Caruso, C., G. Chilosi, C. Caporale, L. Leonardi, L. Bertini, P. Margo, and V. Buonocore. 1999. Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci. 140: 107-120.
    CrossRef
  9. Chen, G. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the difference in their enzymatic and molecular properties. Plant Cell Physiol. 30: 987-998.
  10. Chittor, J. M., J. E. Leach, and F. F. White. 1999. Induction of peroxidase during defense against pathogens. In: Pathogenesisrelated Proteins in Plants. CRC Press, Boca Raton, FL.
  11. Cordero, M. J., D. Raventos, and B. San Segundo. 1992. Induction of PR-proteins in germinating maize seeds infected with the fungus Fusarium moniliforme. Physiol. Mol. Plant Pathol. 41: 189-200.
    CrossRef
  12. De Vleesschauwer, D., P. Cornelis, and M. Hofte. 2006. Redoxactive pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol. Plant Microbe Interact. 19: 1406-1419.
    Pubmed CrossRef
  13. Driss, F., M. Kallassy-Award, N. Zouari, and S. Jaoua. 2005. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J. Appl. Microbiol. 99: 945-953.
    Pubmed CrossRef
  14. Duzhak, A. B., Z. I. Panfilova, T. G. Duzhak, and E. A. Vasyunina. 2009. Extracellular chitinase of mutant superproducing strain Serratia marcescens M-1. Biochemistry 74: 257-263.
  15. Edreva, A. 2005. Pathogenesis-related proteins: Research progress in the last 15 years. Gen. Appl. Plant Physiol. 31: 105-124.
  16. Frank, J. A. and S. S. Leach. 1980. Comparison of tuberborne and soilborne inoculums in rhizoctonia disease of potato. Phytopathology 70: 51-53.
    CrossRef
  17. Fu, J. and B. Huang. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45: 105-114.
    CrossRef
  18. Gayoso, C., F. Pomar, F. Merino, and M. A. Bernal. 2004. Oxidative metabolism and phenolic compounds in Capsicum annuum L. var. annuum infected by Phytophthora capsici Leon. Sci. Hort. 102: 1-13.
    CrossRef
  19. Haran, S., H. Schickler, A. Oppenheim, and I. Chet. 1995. New components of the chitinolytic system of Trichoderma harzianum. Mycol. Res. 99: 441-446.
    CrossRef
  20. Jeger, M. J., G. A. Hide, P. H. J. F. Van Den Boogert, A. J. Termorshuizen, and P. Van Baarlen. 1996. Pathology and control of soil-borne fungal pathogens of potato. Potato Res. 39: 437-469.
    CrossRef
  21. Jung, W. J., K. N. An, Y. L. Jin, R. D. Park, K. T. Lim, K. Y. Kim, and T. H. Kim. 2003. Biological control of damping-off caused by Rhizoctonia solani using chitinase-producing Paenibacillus illinoisensis KJA-424. Soil Biol. Biochem. 35: 1261-1264.
    CrossRef
  22. Jung, W. J., Y. L. Jin, Y. C. Kim, K. Y. Kim, R. D. Park, and T. H. Kim. 2004. Inoculation of Paenibacillus illinoisensis alleviates root mortality, activates of lignifications-related enzymes, and induction of the isozymes in pepper plants infected by Phytophthora capsici. Biol. Control 30: 645-652.
    CrossRef
  23. Jung, W. J., F. Mabood, T. H. Kim, and D. Smith. 2007. Induction of pathogenesis-related proteins during biocontrol of Rhizoctonia solani with Pseudomonas aureofaciens in soybean (Glycine max L. Merr.) plants. Biocontrol 52: 895-904.
    CrossRef
  24. Jung, W. J., R. D. Park, F. Mabood, A. Souleimanov, and D. Smith. 2011. Effects of Pseudomonas aureofaciens 63-28 on defense responses in soybean plants infected by Rhizoctonia solani. J. Microbiol. Biotechnol. 21: 379-386
    Pubmed
  25. Kavino, M., S. Harish, N. Kumar, T. Saravanakumar Damodaran, K. Soorianathasundaram, and R. Samiyappan. 2007. Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol. Biochem. 39: 1087-1098.
    CrossRef
  26. Koga, D., Y. Sasaki, Y. Uchiumi, N. Hiral, Y. Arakane, and Y. Nagamatsu. 1997. Purification and characterization of Bombyx mori chitinases. Insect Biochem. Mol. Biol. 27: 757-767.
    CrossRef
  27. Kolattukudy, P. E., R. Mohan, M. A. Bajar, and B. A. Sherf. 1992. Plant peroxidase gene expression and function. Biochem. Soc. Trans. 20: 333-337.
    Pubmed
  28. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-
    Pubmed CrossRef
  29. Liu, M., Q. X. Cai, H. Z. Liu, B. H. Zhang, J. P. Yan, and Z. M. Yuan. 2002. Chitinolytic activity in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J. Appl. Microbiol. 58: 840-849.
  30. Lingappa, Y. and J. L. Lockwood. 1962. Chitin media for selective isolation and culture of Actinomycetes. Phytopathology 52: 317-323.
  31. Lumsden, R. D. and G. C. Papavizas. 1988. Biological control of soilborne plant pathogens. Am. J. Alter. Agric. 3: 98-101.
    CrossRef
  32. Magnin-Robert, M., P. Trotel-Aziz, D. Quantinet, and S. Biagianti. 2007. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3-glucanase activities under field conditions. Eur. J. Plant Pathol. 118: 43-57.
    CrossRef
  33. Mohammadi, M. and H. Kazemi. 2002. Change in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 162: 491-498.
    CrossRef
  34. Monreal, J. and E. T. Reese. 1969. The chitinase of Serratia marcescens. Can. J. Microbiol. 15: 689-696.
    Pubmed CrossRef
  35. Nguyen, V. N., Y. J. Kim, K. T. Oh, W. J. Jung, and R. D. Park. 2008. Antifungal activity of chitinases from Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9. Curr. Microbiol. 56: 28-32.
    Pubmed CrossRef
  36. Ohya, T., Y. Morimura, H. Saji, T. Mihara, and T. Ikawa. 1997. Purification and characterization of ascorbate peroxidase in roots of Japanese radish. Plant Sci. 125: 137-145.
    CrossRef
  37. Pan, S. Q., X. S. Ye, and J. Kue. 1989. Direct detection of β- 1,3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Anal. Biochem. 182: 136-140.
    CrossRef
  38. Paranidharan, V., A. Palaniswami, P. Vidhyasekaran, and R. Velazhahan. 2003. Induction of enzymatic scavengers of active oxygen species in rice in response to infection by Rhizoctonia solani. Acta Physiol. Plant. 25: 91-96.
    CrossRef
  39. Parry, D. W. 1990. Diseases of potato, pp. 276-280. In: Plant Pathology in Agriculture. Cambridge University Press, Cambridge.
  40. Patil, R. S., V. Ghormade, and M. V. Deshande. 2000. Chitinolytic enzymes: An exploration. Enzyme Microb. Technol. 26: 473-
    CrossRef
  41. Peumans, W. J., P. Proost, R. J. Swennen, and C. J. Van Dame. 2002. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. Plant Physiol. 130: 1063-1072.
    Pubmed KoreaMed CrossRef
  42. Rao, D. H. and L. R. Gowda. 2008. Abundant class III acidic chitinase homologue in tamarind (Tamarindus indica) seed serves as the major storage protein. J. Agric. Food Chem. 56: 2175-2182.
    Pubmed CrossRef
  43. Reyes-Ramirez, A., B. I. Escudero-Abarca, G. Aguilar-Uscanga, P. M. Hayward-Jones, and J. E. Barboza-Corona. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69: 131-134.
    CrossRef
  44. Roby, D., K. Broglie, R. Cressman, P. Biddle, I. Chet, and R. Broglie. 1990. Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2: 999-1007.
    Pubmed KoreaMed
  45. Santos, L. S., E. A. Olivera, M. D. Cunha, O. L. T. Machado, A. G. C. Neves-Ferreira, K. V. S. Fernandes, A. O. Carvalho, J. Perales, and V. M. Gomes. 2007. Expression of chitinase in Adenanthera pavonina seedlings. Physiol. Plant. 131: 80-88.
    Pubmed CrossRef
  46. Senthilkumar, M., V. Govindasamy, and K. Annapurna. 2007. Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr. Microbiol. 55: 25-29.
    Pubmed CrossRef
  47. Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda, Y. Yabuta, and K. Yoshimura. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305-1319.
    Pubmed CrossRef
  48. Shrestha, C. L., I. Ona, and S. Muthukridhnan. 2008. Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani. Eur. J. Plant Pathol. 120: 69-77.
    CrossRef
  49. Song, Y. S., D. J. Seo, B. R. Lee, and W. J. Jung. 2009. Expression patterns of enzymes in different tissues of oil seed rape (Brassica napus L.) seedling. J. Appl. Biol. Chem. 52: 51-
    CrossRef
  50. Taira, T., T. Ohnuma, T. Yamagami, Y. Aso, M. Ishiguro, and M. Ishihara. 2001. Antifungal activity of rye (Secale cereale) seed chitinases: The different binding manner of class I and class II chitinases to the fungal cell walls. Biosci. Biotechnol. Biochem. 66: 970-977.
    Pubmed CrossRef
  51. Thamthiankul, S., S. Suan-Ngay, S. Tantimavanich, and W. Panbangred. 2001. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl. Microbiol. Biotechnol. 56: 395-401.
    Pubmed CrossRef
  52. Trudel, J. and A. Asselin. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178: 362-366.
    CrossRef
  53. Van Loon, L. C., P. A. H. M. Baker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483.
    Pubmed CrossRef
  54. Vinetz, J. M., S. K. Dave, C. A. Specht, K. A. Brameld, B. Xu, R. Hayward, and D. A. Fidock. 1999. The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proc. Natl. Acad. Sci. USA 96: 1406114066.
    CrossRef
  55. Wakelin, A. M. and D. W. M. Leung. 2009. β-1,3-Glucanase activity in the stigma of healthy petunia flowers. Biol. Plant. 51: 69-74.
    CrossRef
  56. Yedidia, I., N. Benhamou, Y. Kapulnik, and I. Chet. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38: 863-873.
    CrossRef
  57. Yong, M. E. and P. A. Carroad. 1981. On continuous culture dilution rate. Can. J. Microbiol. 27: 142-144.
    Pubmed
  58. Zouari, N. and S. Jaoua. 1999. Production and characterization of metalloproteases synthesized concomitantly with δ-endotoxin by Bacillus thuringiensis subsp. kurstaki strain grown on gruelbased media. Enzyme Microb. Technol. 25: 364-371.
    CrossRef