Articles Service
Review
Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi
1Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
2Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
J. Microbiol. Biotechnol. 2024; 34(8): 1551-1562
Published August 28, 2024 https://doi.org/10.4014/jmb.2405.05020
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Graphical Abstract
Introduction
Iron is an essential element for all organisms because it serves as a cofactor in numerous enzymes for various cellular processes. Microbes, including pathogenic fungi, have developed a variety of strategies for acquiring iron and these include 1) reductive iron uptake (reduction of ferric iron to ferrous iron), 2) extraction and capture of iron from host sources such as heme, and 3) siderophore-mediated iron uptake.
Siderophores are secondary metabolites with a molecular weight of 200 to 2,000 Da that are secreted mainly by microbes and plants, and possess a high affinity specifically for ferric iron [1]. Most microbes produce their own siderophores to efficiently uptake iron under iron-deficient environments and, in some cases, they can also use siderophores synthesized by other organisms (so called xenosiderophores). Microbial siderophores are typically synthesized in response to iron depletion, and it has been estimated that at least 500 different types of siderophores have been classified from multiple organisms [1]. Siderophores can be classified into five main types: hydroxamates, catecholates, carboxylates, phenolates, and mixed-types (Table 1) [2]. Hydroxamate siderophores are made up of acylated and hydroxylated alkylamine in bacteria and hydroxylated and alkylated ornithine in fungi. Almost all fungal siderophores are hydroxamate types, which are further grouped into three categories: fusarinines, coprogens, and ferrichromes [3]. The first fungal hydroxamate siderophores, coprogen and ferrichrome, were identified from the smut fungus
-
Table 1 . Five main types of siderophores identified from bacteria and fungi.
Type Siderophores Reference Hydroxamate Coprogen, Coprogen B, Fusarinine, Ferrichrome, Ferrichrome A, Ferricrocin, Ferrirubin, Ferrirhodin, Desferrioxamine B, Rhodotorulic acid, Fusarinine C, Triacetylfusarinine C [58, 72, 101-104] Carboxylate Vibrioferrin, Staphyloferrin A, Rhizoferrin, Achromobactin, Citrate [72, 105-107] Catecholate Enterobactin, Salmochelin, Chrysobactin [108-110] Phenolate Yersiniabactin, Pyochelin [111, 112] Mixed class Pyoverdine, Mycobactin, Aerobactin, Anguibactin [113-116]
Siderophore biosynthesis is mediated by two different pathways. The first involves non-ribosomal peptide synthetase (NRPS), a multimodule enzyme complex responsible for generating structurally highly variable peptides without the use of an RNA template. The second is the NRPS-independent pathway, which is carried out by several enzymes including monooxygenases, decarboxylases, amino and acetyltransferases, amino acid ligases, and aldolases to assemble siderophores. Most hydroxamate and carboxylate siderophores are synthesized by NRPS-independent pathway [1]. After synthesis, siderophores are secreted and chelate iron in the extracellular environment. Iron-bound siderophore is then transported through the cell membrane via a few different mechanisms. In Gram-negative bacteria, the TonB-ExbB-ExbD transport protein complex at the outer membrane is responsible for siderophore uptake from the environment. Subsequently, iron-bound siderophores are further transported by permeases or ATP-binding cassette (ABC) transporters at the cytoplasmic membrane to the cytoplasm. Gram-positive bacteria do not possess the TonB-dependent transporter, but instead utilize ABC transporters in the plasma membrane. Subsequently, iron is dissociated from siderophores by reductive processes involved in the ferric to ferrous iron transition [13]. Several different siderophore uptake mechanisms in fungi have been identified, and these are thoroughly summarized by Das
Iron is essential for the virulence of fungal pathogens during infection, and the competition for iron between the fungal pathogens and the host significantly influences the disease processes. Fungi have developed several sophisticated strategies, including the use of siderophores, for iron acquisition under the low-iron condition of the host. Siderophores play critical roles in virulence for many but not all fungal pathogens of humans. For example, in
Overall, various studies indicate the importance of siderophore biosynthesis and transport in the physiology and virulence of fungi. Therefore, in this review, we summarized what is known about siderophore biosynthesis and transport in selected fungal pathogens to provide an overview of common and unique features and characteristics of the systems. Siderophore biosynthesis and transport in the non-pathogenic fungi,
Siderophore Biosynthesis and Transport in Model Fungi
Saccharomyces cerevisiae
The mechanisms by which siderophore transporters take up their substrate and deliver iron into the cytosol has been investigated [26, 27]. In the case of Arn1, two ferrichrome binding sites exist on the surface of the protein. Extracellular ferrichrome is endocytosed via fluid-phase endocytosis and bound to the high-affinity binding site of Arn1 at the endosomal compartment causing a conformational change of the protein and subsequently triggering relocalization of the protein to the plasma membrane. Once Arn1 is located at the plasma membrane, the second molecule of ferrichrome binds to the low-affinity binding site of the protein, which triggers a second conformational change leading to rapid endocytosis and internalization of the ferrichrome-bound Arn1 to cytosol. After endocytosis, intact ferrichrome is eventually dissociated from Arn1, degraded, and iron is released. At the same time, Arn1 is recycled [26, 27]. In this context, observations with the intact holo-form of ferrichrome suggest an iron storage role for the siderophore [27]. Apart from Arn1, the involvement of substrate and ubiquitination-dependent degradation has been proposed for intracellular trafficking of Sit1/Arn3 between the plasma membrane and the vacuole [28]. Moreover, Aft1, a transcriptional activator of the iron regulon in
In
Aft1 directly binds to the iron responsive element (FeRE) consensus sequence, PyPuCACCCPu, of genes involved in iron transport and metabolism [36]. Among the siderophore transporters in
Apart from Arn siderophore transporters, cell wall proteins are also involved in siderophore uptake and utilization in
Schizosaccharomyces pombe
To date, little information is available on the role of siderophores in the physiology of
Siderophore Biosynthesis and Transport in Plant Pathogenic Fungi
Ustilago maydis
A study utilizing cross-feeding experiments with a non-enterobactin-producing
Magnaporthe grisea
The phytopathogen
Siderophore Biosynthesis and Transport in Fungal Pathogens of Humans
Aspergillus fumigatus
Genes responsible for siderophore biosynthesis have been identified and their functions characterized [65]. The
The next step in the biosynthesis of siderophores, especially ferricrocin and hydroxyferricrocin, is mediated by SidL, which is
Deletion of the genes responsible for either SidF and SidD for the triacetylfusarinine C and ferricrocin biosynthesis pathway, or SidC for the ferricrocin and hydroxyferricrocin biosynthesis pathway only caused attenuated virulence in neutropenic mice, while the
-
Table 2 . Siderophore transporters of
Aspergillus fumigatus and their homologs in other fungi.
Candida albicans
Global expression analysis showed that Sfu1, a GATA-type transcription factor, regulates the expression of genes involved in iron uptake and metabolism in
In addition to the transport of siderophores for its own growth,
Cryptococcus neoformans
Histoplasma capsulatum
An involvement of peroxisomes, organelles that function in multiple metabolic pathways including the glyoxylate cycle, fatty acid b-oxidation, and metabolism of reactive oxygen species, in siderophore synthesis was reported for
Conclusion
Accumulating experimental evidence indicates that siderophore biosynthesis and transport play crucial roles in growth, development, stress responses (
-
Fig. 1. Siderophore synthesis pathways identified in representative fungal species.
Dotted lines indicate the pathways and enzymes not identified yet.
S. pombe andU. maydis produce ferrichrome whileA. fumigatus ,H. capsulatum , andM. grisea synthesize fusarinine, ferricrocin, and coprogen siderophores.
Iron assimilation using siderophores is of particular interest in human fungal pathogens not only because of their involvement in virulence but also because of their value for the development of novel antifungal strategies and other possible therapeutic applications. For example, much attention has been paid to generating siderophore-antifungal drug conjugates, siderophore-fluorophore conjugates, and labeling of siderophores with radionuclides to develop novel fungal diagnostic and therapeutic tools [98-100]. Further studies are needed to understand siderophore biosynthesis, transport (excretion and uptake), and the mechanisms of iron release from iron-bound siderophore upon internalization. Additionally, a broader survey of siderophore biosynthesis and transport machinery is needed to understand contributions to survival and virulence strategies in many other yet unexplored fungi, including emerging fungal pathogens of humans such as
Acknowledgments
This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022 (S.C.), the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning, 2022R1F1A1065306 (W.H.J), and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI053721 (to J.W.K.). J.W.K. is a Burroughs Wellcome Fund Scholar in Molecular Pathogenic Mycology and the Power Corporation fellow of the CIFAR program: Fungal Kingdom, Threats & Opportunities.
Conflict of Interest
The authors have no financial conflicts of interest to declare.
References
- Puja H, Mislin GLA, Rigouin C. 2023. Engineering Siderophore biosynthesis and regulation pathways to increase diversity and availability.
Biomolecules 13 : 959. - Timofeeva AM, Galyamova MR, Sedykh SE. 2022. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture.
Plants (Basel) 11 : 3065. - Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A,
et al . 2021. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores.J. Fungi (Basel) 8 : 21. - Neilands JB. 1952. A crystalline organo-iron pigment from a rust fungus (
Ustilago-Sphaerogena ).J. Am. Chem. Soc. 74 : 4846-4847. - Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings BL, Williams JH. 1952. Coprogen, a new growth factor for coprophilic fungi.
J. Am. Chem. Soc. 74 : 1362-1362. - Hider RC, Kong X. 2010. Chemistry and biology of siderophores.
Nat. Prod. Rep. 27 : 637-657. - Ito T, Neilands JB. 1958. Products of low-iron fermentation with
Bacillus -Subtilis - isolation, characterization and synthesis of 2,3-dihydroxybenzoylglycine.J. Am. Chem. Soc. 80 : 4645-4647. - Thieken A, Winkelmann G. 1992. Rhizoferrin: a complexone type siderophore of the
Mucorales and entomophthorales (Zygomycetes).FEMS Microbiol. Lett. 73 : 37-41. - Holinsworth B, Martin JD. 2009. Siderophore production by marine-derived fungi.
Biometals 22 : 625-632. - Ismail A. 1988. Siderophore production by
Salmonella typhi .Biochem. Biophys. Res. Commun. 150 : 18-24. - Khan A, Singh P, Srivastava A. 2018. Synthesis, nature and utility of universal iron chelator - Siderophore: A review.
Microbiol. Res. 212-213 : 103-111. - Braud A, Geoffroy V, Hoegy F, Mislin GL, Schalk IJ. 2010. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in
Pseudomonas aeruginosa and increases bacterial metal tolerance.Environ. Microbiol. Rep. 2 : 419-425. - Braun V, Hantke K. 2011. Recent insights into iron import by bacteria.
Curr. Opin. Chem. Biol. 15 : 328-334. - Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A. 2007. Fungal siderophores: structure, functions and regulation, pp. 1-42.
In Varma A, Chincholkar SB (eds.),Microbial Siderophores , Ed. Springer Berlin Heidelberg, Berlin, Germany. - Kragl C, Schrettl M, Abt B, Sarg B, Lindner HH, Haas H. 2007. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of
Aspergillus fumigatus .Eukaryot Cell. 6 : 1278-1285. - Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC. 2001. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in
Saccharomyces cerevisiae .J. Biol. Chem. 276 : 10218-10223. - Schrettl M, Ibrahim-Granet O, Droin S, Huerre M, Latge JP, Haas H. 2010. The crucial role of the
Aspergillus fumigatus siderophore system in interaction with alveolar macrophages.Microbes Infect. 12 : 1035-1041. - Aguiar M, Orasch T, Shadkchan Y, Caballero P, Pfister J, Sastré-Velásquez LE,
et al . 2022. Uptake of the siderophore triacetylfusarinine C, but not fusarinine C, is crucial for virulence ofAspergillus fumigatus .mBio 13 : e0219222. - Hwang LH, Mayfield JA, Rine J, Sil A. 2008.
Histoplasma requires SID1 , a member of an iron-regulated siderophore gene cluster, for host colonization.PLoS Pathog. 4 : e1000044. - Heymann P, Ernst JF, Winkelmann G. 1999. Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in
Saccharomyces cerevisiae as a member of the major facilitator superfamily.Biometals 12 : 301-306. - Heymann P, Ernst JF, Winkelmann G. 2000. A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in
Saccharomyces cerevisiae .Biometals 13 : 65-72. - Heymann P, Ernst JF, Winkelmann G. 2000. Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in
Saccharomyces cerevisiae .FEMS Microbiol. Lett. 186 : 221-227. - Lesuisse E, Simon-Casteras M, Labbe P. 1998. Siderophore-mediated iron uptake in
Saccharomyces cerevisiae : theSIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily.Microbiology (Reading) 144(Pt 12) : 3455-3462. - Pelletier B, Beaudoin J, Philpott CC, Labbé S. 2003. Fep1 represses expression of the fission yeast siderophore-iron transport system.
Nucleic Acids Res. 31 : 4332-4344. - Hu CJ, Bai C, Zheng XD, Wang YM, Wang Y. 2002. Characterization and functional analysis of the siderophore-iron transporter CaArn1p in
Candida albicans .J. Biol. Chem. 277 : 30598-30605. - Kim Y, Yun CW, Philpott CC. 2002. Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in
Saccharomyces cerevisiae .EMBO J. 21 : 3632-3642. - Moore RE, Kim Y, Philpott CC. 2003. The mechanism of ferrichrome transport through Arn1p and its metabolism in
Saccharomyces cerevisiae .Proc. Natl. Acad. Sci. USA 100 : 5664-5669. - Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touze N. 2008. Substrate- and ubiquitindependent trafficking of the yeast siderophore transporter Sit1.
Traffic 9 : 1372-1391. - Jeong MY, Kang CM, Kim JH, Heo DH, Chang M, Baek IJ,
et al . 2009. A novel function of Aft1 in regulating ferrioxamine B uptake: Aft1 modulates Arn3 ubiquitination inSaccharomyces cerevisiae .Biochem. J. 422 : 181-191. - Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR. 2001. A second iron-regulatory system in yeast independent of Aft1p.
Proc. Natl. Acad. Sci. USA 98 : 14322-14327. - Martinez-Pastor MT, Perea-Garcia A, Puig S. 2017. Mechanisms of iron sensing and regulation in the yeast
Saccharomyces cerevisiae .World J. Microbiol. Biotechnol. 33 : 75. - Courel M, Lallet S, Camadro JM, Blaiseau PL. 2005. Direct activation of genes involved in intracellular iron use by the yeast ironresponsive transcription factor Aft2 without its paralog Aft1.
Mol. Cell. Biol. 25 : 6760-6771. - Ramos-Alonso L, Romero AM, Martinez-Pastor MT, Puig S. 2020. Iron regulatory mechanisms in
Saccharomyces cerevisiae .Front. Microbiol. 11 : 582830. - Li L, Bagley D, Ward DM, Kaplan J. 2008. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast.
Mol. Cell. Biol. 28 : 1326-1337. - Outten CE, Albetel AN. 2013. Iron sensing and regulation in
Saccharomyces cerevisiae : Ironing out the mechanistic details.Curr. Opin. Microbiol. 16 : 662-668. - Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD. 1996. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast.
EMBO J. 15 : 3377-3384. - Rutherford JC, Jaron S, Winge DR. 2003. Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements.
J. Biol. Chem. 278 : 27636-27643. - Kang CM, Kang S, Park YS, Yun CW. 2015. Physical interaction between Sit1 and Aft1 upregulates FOB uptake activity by inhibiting protein degradation of Sit1 in
Saccharomyces cerevisiae .FEMS Yeast Res. 15 : fov080. - Fragiadakis GS, Tzamarias D, Alexandraki D. 2004. Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation.
EMBO J. 23 : 333-342. - Crisp RJ, Adkins EM, Kimmel E, Kaplan J. 2006. Recruitment of Tup1p and Cti6p regulates heme-deficient expression of Aft1p target genes.
EMBO J. 25 : 512-521. - Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D,
et al . 2001. Three cell wall mannoproteins facilitate the uptake of iron inSaccharomyces cerevisiae .J. Biol. Chem. 276 : 49244-49250. - Park YS, Jeong HS, Sung HC, Yun CW. 2005. Sed1p interacts with Arn3p physically and mediates ferrioxamine B uptake in
Saccharomyces cerevisiae .Curr. Genet. 47 : 150-155. - Vyas A, Freitas AV, Ralston ZA, Tang Z. 2021. Fission Yeast
Schizosaccharomyces pombe : A Unicellular "Micromammal" model organism.Curr. Protoc. 1 : e151. - Schrettl M, Winkelmann G, Haas H. 2004. Ferrichrome in
Schizosaccharomyces pombe --an iron transport and iron storage compound.Biometals. 17 : 647-654. - Haas H. 2003. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage.
Appl. Microbiol. Biotechnol. 62 : 316-330. - Schwecke T, Gottling K, Durek P, Duenas I, Kaufer NF, Zock-Emmenthal S,
et al . 2006. Nonribosomal peptide synthesis inSchizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi.Chembiochem. 7 : 612-622. - Brault A, Mbuya B, Labbe S. 2022. Sib1, Sib2, and Sib3 proteins are required for ferrichrome-mediated cross-feeding interaction between
Schizosaccharomyces pombe andSaccharomyces cerevisiae .Front. Microbiol. 13 : 962853. - Pelletier B, Beaudoin J, Philpott CC, Labbe S. 2003. Fep1 represses expression of the fission yeast
Schizosaccharomyces pombe siderophore-iron transport system.Nucleic Acids Res. 31 : 4332-4344. - Plante S, Labbe S. 2019. Spore Germination requires ferrichrome biosynthesis and the siderophore transporter Str1 in
Schizosaccharomyces pombe .Genetics 211 : 893-911. - Yu C, Qi J, Han H, Wang P, Liu C. 2023. Progress in pathogenesis research of
Ustilago maydis , and the metabolites involved along with their biosynthesis.Mol. Plant Pathol. 24 : 495-509. - Budde AD, Leong SA. 1989. Characterization of siderophores from
Ustilago maydis .Mycopathologia 108 : 125-133. - Wang J, Budde AD, Leong SA. 1989. Analysis of ferrichrome biosynthesis in the phytopathogenic fungus
Ustilago maydis : cloning of an ornithine-N 5-oxygenase gene.J. Bacteriol. 171 : 2811-2818. - Mei B, Budde AD, Leong SA. 1993.
sid1 , a gene initiating siderophore biosynthesis inUstilago maydis : molecular characterization, regulation by iron, and role in phytopathogenicity.Proc. Natl. Acad. Sci. USA 90 : 903-907. - Yuan WM, Gentil GD, Budde AD, Leong SA. 2001. Characterization of the
Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster.J. Bacteriol. 183 : 4040-4051. - Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, Eichhorn H,
et al . 2010. Elucidation of the complete ferrichrome A biosynthetic pathway inUstilago maydis .Mol. Microbiol. 75 : 1260-1271. - Servouse M, Karst F. 1986. Regulation of early enzymes of ergosterol biosynthesis in
Saccharomyces cerevisiae .Biochem J. 240 : 541-547. - Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kämper J, Müller P,
et al . 2006. A ferroxidation/permeation iron uptake system is required for virulence inUstilago maydis .Plant Cell 18 : 3332-3345. - Antelo L, Hof C, Welzel K, Eisfeld K, Sterner O, Anke H. 2006. Siderophores produced by
Magnaporthe grisea in the presence and absence of iron.Z Naturforsch C J. Biosci. 61 : 461-464. - Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H. 2007. Ferricrocin synthesis in
Magnaporthe grisea and its role in pathogenicity in rice.Mol. Plant Pathol. 8 : 163-172. - Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H. 2009. Siderophore synthesis in is essential for vegetative growth, conidiation and resistance to oxidative stress.
Fungal Genet. Biol. 46 : 321-332. - Kwon-Chung KJ, Sugui JA. 2013.
Aspergillus fumigatus --what makes the species a ubiquitous human fungal pathogen?PLoS Pathog. 9 : e1003743. - Baddley JW, Stephens JM, Ji X, Gao X, Schlamm HT, Tarallo M. 2013. Aspergillosis in Intensive Care Unit (ICU) patients: epidemiology and economic outcomes.
BMC Infect. Dis. 13 : 29. - Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections.
Sci. Transl. Med. 4 : 165rv113. - Nilius AM, Farmer SG. 1990. Identification of extracellular siderophores of pathogenic strains of
Aspergillus fumigatus .J. Med. Vet. Mycol. 28 : 395-403. - Haas H. 2014. Fungal siderophore metabolism with a focus on
Aspergillus fumigatus .Nat. Prod. Rep. 31 : 1266-1276. - Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M,
et al . 2007. Distinct roles for intra- and extracellular siderophores duringAspergillus fumigatus infection.PLoS Pathog. 3 : 1195-1207. - Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM. 2005. The
Aspergillus fumigatus siderophore biosynthetic genesidA , encoding L-ornithineN 5-oxygenase, is required for virulence.Infect. Immun. 73 : 5493-5503. - Blatzer M, Schrettl M, Sarg B, Lindner HH, Pfaller K, Haas H. 2011. SidL, an
Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin.Appl. Environ. Microbiol. 77 : 4959-4966. - Yasmin S, Alcazar-Fuoli L, Grundlinger M, Puempel T, Cairns T, Blatzer M,
et al . 2012. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogenAspergillus fumigatus .Proc. Natl. Acad .Sci. USA 109 : E497-504. - Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID, Jochl C,
et al . 2010. HapX-mediated adaption to iron starvation is crucial for virulence ofAspergillus fumigatus .PLoS Pathog. 6 : e1001124. - Martinez-Pastor MT, Puig S. 2020. Adaptation to iron deficiency in human pathogenic fungi.
Biochim. Biophys. Acta Mol. Cell Res. 1867 : 118797. - Haas H, Eisendle M, Turgeon BG. 2008. Siderophores in fungal physiology and virulence.
Annu. Rev. Phytopathol. 46 : 149-187. - Mulvihill ED, Moloney NM, Owens RA, Dolan SK, Russell L, Doyle S. 2017. Functional Investigation of Iron-Responsive Microsomal Proteins, including MirC, in
Aspergillus fumigatus .Front. Microbiol. 8 : 418. - Park YS, Kim JY, Yun CW. 2016. Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by
Aspergillus fumigatus .Biochem. J. 473 : 1203-1213. - Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B,
et al . 2003. Characterization of theAspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C.Biochem. J. 371 : 505-513. - Oberegger H, Schoeser M, Zadra I, Abt B, Haas H. 2001. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in
Aspergillus nidulans .Mol. Microbiol. 41 : 1077-1089. - Raymond-Bouchard I, Carroll CS, Nesbitt JR, Henry KA, Pinto LJ, Moinzadeh M,
et al . 2012. Structural requirements for the activity of the MirB ferrisiderophore transporter ofAspergillus fumigatus .Eukaryot. Cell 11 : 1333-1344. - Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T,
et al . 2008. SreA-mediated iron regulation inAspergillus fumigatus .Mol. Microbiol. 70 : 27-43. - Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF. 2002. The siderophore iron transporter of
Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion.Infect. Immun. 70 : 5246-5255. - Ardon O, Bussey H, Philpott C, Ward DM, Davis-Kaplan S, Verroneau S,
et al . 2001. Identification of aCandida albicans ferrichrome transporter and its characterization by expression inSaccharomyces cerevisiae .J. Biol. Chem. 276 : 43049-43055. - Lesuisse E, Knight SA, Camadro JM, Dancis A. 2002. Siderophore uptake by
Candida albicans : effect of serum treatment and comparison withSaccharomyces cerevisiae .Yeast 19 : 329-340. - Nevitt T, Thiele DJ. 2011. Host iron withholding demands siderophore utilization for
Candida glabrata to survive macrophage killing.PLoS Pathog. 7 : e1001322. - Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, Dungan J,
et al . 2004. Regulatory networks affected by iron availability in.Mol. Microbiol. 53 : 1451-1469. - Chen CB, Pande K, French SD, Tuch BB, Noble SM. 2011. An iron homeostasis regulatory circuit with reciprocal roles in commensalism and pathogenesis.
Cell Host Microbe 10 : 118-135. - Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C,
et al . 2015.Candida albicans inhibitsPseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis.PLoS Pathog. 11 : e1005129. - Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J,
et al . 2023. Cryptococcal meningitis.Nat. Rev. Dis. Primers 9 : 62. - Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA, Griffiths EJ,
et al . 2011. Expanding fungal pathogenesis:Cryptococcus breaks out of the opportunistic box.Nat. Rev. Microbiol. 9 : 193-203. - Xue P, Hu G, Jung WH, Kronstad JW. 2023. Metals and the cell surface of
Cryptococcus neoformans .Curr. Opin. Microbiol. 74 : 102331. - Tangen KL, Jung WH, Sham AP, Lian T, Kronstad JW. 2007. The iron- and cAMP-regulated gene
SIT1 influences ferrioxamine B utilization, melanization and cell wall structure inCryptococcus neoformans .Microbiology 153 : 29-41. - Do E, Cho YJ, Kim D, Kronstad JW, Jung WH. 2020. A transcriptional regulatory map of iron homeostasis reveals a new control circuit for capsule formation in
Cryptococcus neoformans .Genetics 215 : 1171-1189. - Valdez AF, Miranda DZ, Guimaraes AJ, Nimrichter L, Nosanchuk JD. 2022. Pathogenicity & virulence of
Histoplasma capsulatum -A multifaceted organism adapted to intracellular environments.Virulence 13 : 1900-1919. - Howard DH, Rafie R, Tiwari A, Faull KF. 2000. Hydroxamate siderophores of
Histoplasma capsulatum .Infect. Immun. 68 : 2338-2343. - Hilty J, George Smulian A, Newman SL. 2011.
Histoplasma capsulatum utilizes siderophores for intracellular iron acquisition in macrophages.Med. Mycol. 49 : 633-642. - Hwang LH, Seth E, Gilmore SA, Sil A. 2012. SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen
Histoplasma capsulatum .Eukaryot. Cell 11 : 16-25. - Chao LY, Marletta MA, Rine J. 2008. Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen
Histoplasma capsulatum .Biochemistry 47 : 7274-7283. - Olivier LM, Krisans SK. 2000. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes.
Biochim. Biophys. Acta 1529 : 89-102. - Brechting PJ, Shah C, Rakotondraibe L, Shen Q, Rappleye CA. 2023.
Histoplasma capsulatum requires peroxisomes for multiple virulence functions including siderophore biosynthesis.mBio 14 : e0328422. - Mular A, Shanzer A, Kozlowski H, Hubmann I, Misslinger M, Krzywik J,
et al . 2021. Cyclic analogs of desferrioxamine E siderophore for 68Ga nuclear imaging: coordination chemistry and biological activity inStaphylococcus aureus .Inorg. Chem. 60 : 17846-17857. - Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. 2023. Fungal siderophore metabolism with a focus on
Aspergillus fumigatus : impact on biotic interactions and potential translational applications.Essays Biochem. 67 : 829-842. - Peukert C, Popat Gholap S, Green O, Pinkert L, van den Heuvel J, van Ham M,
et al . 2022. Enzyme-activated, chemiluminescent siderophore-dioxetane probes enable the selective and highly sensitive detection of bacterial pathogens.Angew. Chem Int. Ed Engl. 61 : e202201423. - Franken AC, Lokman BC, Ram AF, Punt PJ, van den Hondel CA, de Weert S. 2011. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi.
Appl. Microbiol. Biotechnol. 91 : 447-460. - Munawar A, Marshall JW, Cox RJ, Bailey AM, Lazarus CM. 2013. Isolation and characterisation of a ferrirhodin synthetase gene from the sugarcane pathogen
Fusarium sacchari .Chembiochem. 14 : 388-394. - Suzuki S, Fukuda K, Irie M, Hata Y. 2007. Iron chelated cyclic peptide, ferrichrysin, for oral treatment of iron deficiency: solution properties and efficacy in anemic rats.
Int. J. Vitam. Nutr. Res. 77 : 13-21. - Eisendle M, Schrettl M, Kragl C, Muller D, Illmer P, Haas H. 2006. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in
Aspergillus nidulans .Eukaryot. Cell 5 : 1596-1603. - Yamamoto S, Okujo N, Yoshida T, Matsuura S, Shinoda S. 1994. Structure and iron transport activity of vibrioferrin, a new siderophore of
Vibrio parahaemolyticus .J. Biochem. 115 : 868-874. - Konetschny-Rapp S, Jung G, Meiwes J, Zahner H. 1990. Staphyloferrin A: a structurally new siderophore from staphylococci.
Eur. J. Biochem. 191 : 65-74. - Budzikiewicz H. 2010. Microbial siderophores.
Fortschr. Chem. Org. Naturst. 92 : 1-75. - Pollack JR, Neilands JB. 1970. Enterobactin, an iron transport compound from
Salmonella typhimurium .Biochem. Biophys. Res. Commun. 38 : 989-992. - Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G,
et al . 2004. The structure of salmochelins: Cglucosylated enterobactins ofSalmonella enterica .Biometals 17 : 471-481. - Persmark M, Expert D, Neilands JB. 1989. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from
Erwinia chrysanthemi .J. Biol. Chem. 264 : 3187-3193. - Wake A, Misawa M, Matsui A. 1975. Siderochrome production by
Yersinia pestis and its relation to virulence.Infect. Immun. 12 : 1211-1213. - Cox CD, Rinehart KL Jr., Moore ML, Cook JC Jr. 1981. Pyochelin: novel structure of an iron-chelating growth promoter for
Pseudomonas aeruginosa .Proc. Natl. Acad. Sci. USA 78 : 4256-4260. - Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA. 1983. The structure of pyoverdine
Pa , the siderophore ofPseudomonas aeruginosa .Tetrahedron. Lett. 24 : 4877-4880. - Francis J, Madinaveitia J, Macturk HM, Snow GA. 1949. Isolation from acid-fast bacteria of a growth-factor for
Mycobacterium johnei and of a precursor of phthiocol.Nature 163 : 365-366. - Gibson F, Magrath DI. 1969. The isolation and characterization of a hydroxamic acid (aerobactin) formed by
Aerobacter aerogenes 62-I.Biochim. Biophys. Acta 192 : 175-184. - Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM,
et al . 1986. Characterization of anguibactin, a novel siderophore fromVibrio anguillarum 775(pJM1).J. Bacteriol. 167 : 57-65. - Lesuisse E, Simon-Casteras M, Labbe P. 1998. Siderophore-mediated iron uptake in: the
SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily.Microbiology 144 : 3455-3462. - Kim JH, Kim HW, Heo DH, Chang M, Baek IJ, Yun CW. 2009. FgEnd1 is a putative component of the endocytic machinery and mediates ferrichrome uptake in F.
graminearum. Curr. Genet. 55 : 593-600. - Park M, Cho YJ, Lee YW, Jung WH. 2017. Whole genome sequencing analysis of the cutaneous pathogenic yeast
Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff.Mycoses 60 : 188-197. - Cho YJ, Park M, Jung WH. 2019. Resequencing the genome of
Malassezia restricta strain KCTC 27527.Microbiol. Resour. Announc. 8 : e00213-19. - Srivastava VK, Suneetha KJ, Kaur R. 2014. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in
Candida glabrata .Biochem. J. 463 : 103-114. - Wortman JR, Gilsenan JM, Joardar V, Deegan J, Clutterbuck J, Andersen MR,
et al . 2009. The 2008 update of theAspergillus nidulans genome annotation: a community effort.Fungal Genet. Biol. 46 Suppl 1 : S2-13. - Attarian R, Hu G, Sanchez-Leon E, Caza M, Croll D, Do E,
et al . 2018. The monothiol glutaredoxin Grx4 regulates iron homeostasis and virulence inCryptococcus neoformans .mBio 9 : e02377-18.
Related articles in JMB
Article
Review
J. Microbiol. Biotechnol. 2024; 34(8): 1551-1562
Published online August 28, 2024 https://doi.org/10.4014/jmb.2405.05020
Copyright © The Korean Society for Microbiology and Biotechnology.
Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi
Sohyeong Choi1, James W. Kronstad2, and Won Hee Jung1*
1Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
2Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
Correspondence to:Won Hee Jung, whjung@cau.ac.kr
Abstract
Fungi employ diverse mechanisms for iron uptake to ensure proliferation and survival in iron-limited environments. Siderophores are secondary metabolite small molecules with a high affinity specifically for ferric iron; these molecules play an essential role in iron acquisition in fungi and significantly influence fungal physiology and virulence. Fungal siderophores, which are primarily hydroxamate types, are synthesized via non-ribosomal peptide synthetases (NRPS) or NRPS-independent pathways. Following synthesis, siderophores are excreted, chelate iron, and are transported into the cell by specific cell membrane transporters. In several human pathogenic fungi, siderophores are pivotal for virulence, as inhibition of their synthesis or transport significantly reduces disease in murine models of infection. This review briefly highlights siderophore biosynthesis and transport mechanisms in fungal pathogens as well the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Understanding siderophore biosynthesis and transport in pathogenic fungi provides valuable insights into fungal biology and illuminates potential therapeutic targets for combating fungal infections.
Keywords: Fungus, iron, siderophore, virulence
Introduction
Iron is an essential element for all organisms because it serves as a cofactor in numerous enzymes for various cellular processes. Microbes, including pathogenic fungi, have developed a variety of strategies for acquiring iron and these include 1) reductive iron uptake (reduction of ferric iron to ferrous iron), 2) extraction and capture of iron from host sources such as heme, and 3) siderophore-mediated iron uptake.
Siderophores are secondary metabolites with a molecular weight of 200 to 2,000 Da that are secreted mainly by microbes and plants, and possess a high affinity specifically for ferric iron [1]. Most microbes produce their own siderophores to efficiently uptake iron under iron-deficient environments and, in some cases, they can also use siderophores synthesized by other organisms (so called xenosiderophores). Microbial siderophores are typically synthesized in response to iron depletion, and it has been estimated that at least 500 different types of siderophores have been classified from multiple organisms [1]. Siderophores can be classified into five main types: hydroxamates, catecholates, carboxylates, phenolates, and mixed-types (Table 1) [2]. Hydroxamate siderophores are made up of acylated and hydroxylated alkylamine in bacteria and hydroxylated and alkylated ornithine in fungi. Almost all fungal siderophores are hydroxamate types, which are further grouped into three categories: fusarinines, coprogens, and ferrichromes [3]. The first fungal hydroxamate siderophores, coprogen and ferrichrome, were identified from the smut fungus
-
Table 1 . Five main types of siderophores identified from bacteria and fungi..
Type Siderophores Reference Hydroxamate Coprogen, Coprogen B, Fusarinine, Ferrichrome, Ferrichrome A, Ferricrocin, Ferrirubin, Ferrirhodin, Desferrioxamine B, Rhodotorulic acid, Fusarinine C, Triacetylfusarinine C [58, 72, 101-104] Carboxylate Vibrioferrin, Staphyloferrin A, Rhizoferrin, Achromobactin, Citrate [72, 105-107] Catecholate Enterobactin, Salmochelin, Chrysobactin [108-110] Phenolate Yersiniabactin, Pyochelin [111, 112] Mixed class Pyoverdine, Mycobactin, Aerobactin, Anguibactin [113-116]
Siderophore biosynthesis is mediated by two different pathways. The first involves non-ribosomal peptide synthetase (NRPS), a multimodule enzyme complex responsible for generating structurally highly variable peptides without the use of an RNA template. The second is the NRPS-independent pathway, which is carried out by several enzymes including monooxygenases, decarboxylases, amino and acetyltransferases, amino acid ligases, and aldolases to assemble siderophores. Most hydroxamate and carboxylate siderophores are synthesized by NRPS-independent pathway [1]. After synthesis, siderophores are secreted and chelate iron in the extracellular environment. Iron-bound siderophore is then transported through the cell membrane via a few different mechanisms. In Gram-negative bacteria, the TonB-ExbB-ExbD transport protein complex at the outer membrane is responsible for siderophore uptake from the environment. Subsequently, iron-bound siderophores are further transported by permeases or ATP-binding cassette (ABC) transporters at the cytoplasmic membrane to the cytoplasm. Gram-positive bacteria do not possess the TonB-dependent transporter, but instead utilize ABC transporters in the plasma membrane. Subsequently, iron is dissociated from siderophores by reductive processes involved in the ferric to ferrous iron transition [13]. Several different siderophore uptake mechanisms in fungi have been identified, and these are thoroughly summarized by Das
Iron is essential for the virulence of fungal pathogens during infection, and the competition for iron between the fungal pathogens and the host significantly influences the disease processes. Fungi have developed several sophisticated strategies, including the use of siderophores, for iron acquisition under the low-iron condition of the host. Siderophores play critical roles in virulence for many but not all fungal pathogens of humans. For example, in
Overall, various studies indicate the importance of siderophore biosynthesis and transport in the physiology and virulence of fungi. Therefore, in this review, we summarized what is known about siderophore biosynthesis and transport in selected fungal pathogens to provide an overview of common and unique features and characteristics of the systems. Siderophore biosynthesis and transport in the non-pathogenic fungi,
Siderophore Biosynthesis and Transport in Model Fungi
Saccharomyces cerevisiae
The mechanisms by which siderophore transporters take up their substrate and deliver iron into the cytosol has been investigated [26, 27]. In the case of Arn1, two ferrichrome binding sites exist on the surface of the protein. Extracellular ferrichrome is endocytosed via fluid-phase endocytosis and bound to the high-affinity binding site of Arn1 at the endosomal compartment causing a conformational change of the protein and subsequently triggering relocalization of the protein to the plasma membrane. Once Arn1 is located at the plasma membrane, the second molecule of ferrichrome binds to the low-affinity binding site of the protein, which triggers a second conformational change leading to rapid endocytosis and internalization of the ferrichrome-bound Arn1 to cytosol. After endocytosis, intact ferrichrome is eventually dissociated from Arn1, degraded, and iron is released. At the same time, Arn1 is recycled [26, 27]. In this context, observations with the intact holo-form of ferrichrome suggest an iron storage role for the siderophore [27]. Apart from Arn1, the involvement of substrate and ubiquitination-dependent degradation has been proposed for intracellular trafficking of Sit1/Arn3 between the plasma membrane and the vacuole [28]. Moreover, Aft1, a transcriptional activator of the iron regulon in
In
Aft1 directly binds to the iron responsive element (FeRE) consensus sequence, PyPuCACCCPu, of genes involved in iron transport and metabolism [36]. Among the siderophore transporters in
Apart from Arn siderophore transporters, cell wall proteins are also involved in siderophore uptake and utilization in
Schizosaccharomyces pombe
To date, little information is available on the role of siderophores in the physiology of
Siderophore Biosynthesis and Transport in Plant Pathogenic Fungi
Ustilago maydis
A study utilizing cross-feeding experiments with a non-enterobactin-producing
Magnaporthe grisea
The phytopathogen
Siderophore Biosynthesis and Transport in Fungal Pathogens of Humans
Aspergillus fumigatus
Genes responsible for siderophore biosynthesis have been identified and their functions characterized [65]. The
The next step in the biosynthesis of siderophores, especially ferricrocin and hydroxyferricrocin, is mediated by SidL, which is
Deletion of the genes responsible for either SidF and SidD for the triacetylfusarinine C and ferricrocin biosynthesis pathway, or SidC for the ferricrocin and hydroxyferricrocin biosynthesis pathway only caused attenuated virulence in neutropenic mice, while the
-
Table 2 . Siderophore transporters of
Aspergillus fumigatus and their homologs in other fungi..
Candida albicans
Global expression analysis showed that Sfu1, a GATA-type transcription factor, regulates the expression of genes involved in iron uptake and metabolism in
In addition to the transport of siderophores for its own growth,
Cryptococcus neoformans
Histoplasma capsulatum
An involvement of peroxisomes, organelles that function in multiple metabolic pathways including the glyoxylate cycle, fatty acid b-oxidation, and metabolism of reactive oxygen species, in siderophore synthesis was reported for
Conclusion
Accumulating experimental evidence indicates that siderophore biosynthesis and transport play crucial roles in growth, development, stress responses (
-
Figure 1. Siderophore synthesis pathways identified in representative fungal species.
Dotted lines indicate the pathways and enzymes not identified yet.
S. pombe andU. maydis produce ferrichrome whileA. fumigatus ,H. capsulatum , andM. grisea synthesize fusarinine, ferricrocin, and coprogen siderophores.
Iron assimilation using siderophores is of particular interest in human fungal pathogens not only because of their involvement in virulence but also because of their value for the development of novel antifungal strategies and other possible therapeutic applications. For example, much attention has been paid to generating siderophore-antifungal drug conjugates, siderophore-fluorophore conjugates, and labeling of siderophores with radionuclides to develop novel fungal diagnostic and therapeutic tools [98-100]. Further studies are needed to understand siderophore biosynthesis, transport (excretion and uptake), and the mechanisms of iron release from iron-bound siderophore upon internalization. Additionally, a broader survey of siderophore biosynthesis and transport machinery is needed to understand contributions to survival and virulence strategies in many other yet unexplored fungi, including emerging fungal pathogens of humans such as
Acknowledgments
This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022 (S.C.), the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning, 2022R1F1A1065306 (W.H.J), and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI053721 (to J.W.K.). J.W.K. is a Burroughs Wellcome Fund Scholar in Molecular Pathogenic Mycology and the Power Corporation fellow of the CIFAR program: Fungal Kingdom, Threats & Opportunities.
Conflict of Interest
The authors have no financial conflicts of interest to declare.
Fig 1.
-
Table 1 . Five main types of siderophores identified from bacteria and fungi..
Type Siderophores Reference Hydroxamate Coprogen, Coprogen B, Fusarinine, Ferrichrome, Ferrichrome A, Ferricrocin, Ferrirubin, Ferrirhodin, Desferrioxamine B, Rhodotorulic acid, Fusarinine C, Triacetylfusarinine C [58, 72, 101-104] Carboxylate Vibrioferrin, Staphyloferrin A, Rhizoferrin, Achromobactin, Citrate [72, 105-107] Catecholate Enterobactin, Salmochelin, Chrysobactin [108-110] Phenolate Yersiniabactin, Pyochelin [111, 112] Mixed class Pyoverdine, Mycobactin, Aerobactin, Anguibactin [113-116]
-
Table 2 . Siderophore transporters of
Aspergillus fumigatus and their homologs in other fungi..
References
- Puja H, Mislin GLA, Rigouin C. 2023. Engineering Siderophore biosynthesis and regulation pathways to increase diversity and availability.
Biomolecules 13 : 959. - Timofeeva AM, Galyamova MR, Sedykh SE. 2022. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture.
Plants (Basel) 11 : 3065. - Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A,
et al . 2021. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores.J. Fungi (Basel) 8 : 21. - Neilands JB. 1952. A crystalline organo-iron pigment from a rust fungus (
Ustilago-Sphaerogena ).J. Am. Chem. Soc. 74 : 4846-4847. - Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings BL, Williams JH. 1952. Coprogen, a new growth factor for coprophilic fungi.
J. Am. Chem. Soc. 74 : 1362-1362. - Hider RC, Kong X. 2010. Chemistry and biology of siderophores.
Nat. Prod. Rep. 27 : 637-657. - Ito T, Neilands JB. 1958. Products of low-iron fermentation with
Bacillus -Subtilis - isolation, characterization and synthesis of 2,3-dihydroxybenzoylglycine.J. Am. Chem. Soc. 80 : 4645-4647. - Thieken A, Winkelmann G. 1992. Rhizoferrin: a complexone type siderophore of the
Mucorales and entomophthorales (Zygomycetes).FEMS Microbiol. Lett. 73 : 37-41. - Holinsworth B, Martin JD. 2009. Siderophore production by marine-derived fungi.
Biometals 22 : 625-632. - Ismail A. 1988. Siderophore production by
Salmonella typhi .Biochem. Biophys. Res. Commun. 150 : 18-24. - Khan A, Singh P, Srivastava A. 2018. Synthesis, nature and utility of universal iron chelator - Siderophore: A review.
Microbiol. Res. 212-213 : 103-111. - Braud A, Geoffroy V, Hoegy F, Mislin GL, Schalk IJ. 2010. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in
Pseudomonas aeruginosa and increases bacterial metal tolerance.Environ. Microbiol. Rep. 2 : 419-425. - Braun V, Hantke K. 2011. Recent insights into iron import by bacteria.
Curr. Opin. Chem. Biol. 15 : 328-334. - Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A. 2007. Fungal siderophores: structure, functions and regulation, pp. 1-42.
In Varma A, Chincholkar SB (eds.),Microbial Siderophores , Ed. Springer Berlin Heidelberg, Berlin, Germany. - Kragl C, Schrettl M, Abt B, Sarg B, Lindner HH, Haas H. 2007. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of
Aspergillus fumigatus .Eukaryot Cell. 6 : 1278-1285. - Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC. 2001. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in
Saccharomyces cerevisiae .J. Biol. Chem. 276 : 10218-10223. - Schrettl M, Ibrahim-Granet O, Droin S, Huerre M, Latge JP, Haas H. 2010. The crucial role of the
Aspergillus fumigatus siderophore system in interaction with alveolar macrophages.Microbes Infect. 12 : 1035-1041. - Aguiar M, Orasch T, Shadkchan Y, Caballero P, Pfister J, Sastré-Velásquez LE,
et al . 2022. Uptake of the siderophore triacetylfusarinine C, but not fusarinine C, is crucial for virulence ofAspergillus fumigatus .mBio 13 : e0219222. - Hwang LH, Mayfield JA, Rine J, Sil A. 2008.
Histoplasma requires SID1 , a member of an iron-regulated siderophore gene cluster, for host colonization.PLoS Pathog. 4 : e1000044. - Heymann P, Ernst JF, Winkelmann G. 1999. Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in
Saccharomyces cerevisiae as a member of the major facilitator superfamily.Biometals 12 : 301-306. - Heymann P, Ernst JF, Winkelmann G. 2000. A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in
Saccharomyces cerevisiae .Biometals 13 : 65-72. - Heymann P, Ernst JF, Winkelmann G. 2000. Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in
Saccharomyces cerevisiae .FEMS Microbiol. Lett. 186 : 221-227. - Lesuisse E, Simon-Casteras M, Labbe P. 1998. Siderophore-mediated iron uptake in
Saccharomyces cerevisiae : theSIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily.Microbiology (Reading) 144(Pt 12) : 3455-3462. - Pelletier B, Beaudoin J, Philpott CC, Labbé S. 2003. Fep1 represses expression of the fission yeast siderophore-iron transport system.
Nucleic Acids Res. 31 : 4332-4344. - Hu CJ, Bai C, Zheng XD, Wang YM, Wang Y. 2002. Characterization and functional analysis of the siderophore-iron transporter CaArn1p in
Candida albicans .J. Biol. Chem. 277 : 30598-30605. - Kim Y, Yun CW, Philpott CC. 2002. Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in
Saccharomyces cerevisiae .EMBO J. 21 : 3632-3642. - Moore RE, Kim Y, Philpott CC. 2003. The mechanism of ferrichrome transport through Arn1p and its metabolism in
Saccharomyces cerevisiae .Proc. Natl. Acad. Sci. USA 100 : 5664-5669. - Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touze N. 2008. Substrate- and ubiquitindependent trafficking of the yeast siderophore transporter Sit1.
Traffic 9 : 1372-1391. - Jeong MY, Kang CM, Kim JH, Heo DH, Chang M, Baek IJ,
et al . 2009. A novel function of Aft1 in regulating ferrioxamine B uptake: Aft1 modulates Arn3 ubiquitination inSaccharomyces cerevisiae .Biochem. J. 422 : 181-191. - Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR. 2001. A second iron-regulatory system in yeast independent of Aft1p.
Proc. Natl. Acad. Sci. USA 98 : 14322-14327. - Martinez-Pastor MT, Perea-Garcia A, Puig S. 2017. Mechanisms of iron sensing and regulation in the yeast
Saccharomyces cerevisiae .World J. Microbiol. Biotechnol. 33 : 75. - Courel M, Lallet S, Camadro JM, Blaiseau PL. 2005. Direct activation of genes involved in intracellular iron use by the yeast ironresponsive transcription factor Aft2 without its paralog Aft1.
Mol. Cell. Biol. 25 : 6760-6771. - Ramos-Alonso L, Romero AM, Martinez-Pastor MT, Puig S. 2020. Iron regulatory mechanisms in
Saccharomyces cerevisiae .Front. Microbiol. 11 : 582830. - Li L, Bagley D, Ward DM, Kaplan J. 2008. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast.
Mol. Cell. Biol. 28 : 1326-1337. - Outten CE, Albetel AN. 2013. Iron sensing and regulation in
Saccharomyces cerevisiae : Ironing out the mechanistic details.Curr. Opin. Microbiol. 16 : 662-668. - Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD. 1996. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast.
EMBO J. 15 : 3377-3384. - Rutherford JC, Jaron S, Winge DR. 2003. Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements.
J. Biol. Chem. 278 : 27636-27643. - Kang CM, Kang S, Park YS, Yun CW. 2015. Physical interaction between Sit1 and Aft1 upregulates FOB uptake activity by inhibiting protein degradation of Sit1 in
Saccharomyces cerevisiae .FEMS Yeast Res. 15 : fov080. - Fragiadakis GS, Tzamarias D, Alexandraki D. 2004. Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation.
EMBO J. 23 : 333-342. - Crisp RJ, Adkins EM, Kimmel E, Kaplan J. 2006. Recruitment of Tup1p and Cti6p regulates heme-deficient expression of Aft1p target genes.
EMBO J. 25 : 512-521. - Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D,
et al . 2001. Three cell wall mannoproteins facilitate the uptake of iron inSaccharomyces cerevisiae .J. Biol. Chem. 276 : 49244-49250. - Park YS, Jeong HS, Sung HC, Yun CW. 2005. Sed1p interacts with Arn3p physically and mediates ferrioxamine B uptake in
Saccharomyces cerevisiae .Curr. Genet. 47 : 150-155. - Vyas A, Freitas AV, Ralston ZA, Tang Z. 2021. Fission Yeast
Schizosaccharomyces pombe : A Unicellular "Micromammal" model organism.Curr. Protoc. 1 : e151. - Schrettl M, Winkelmann G, Haas H. 2004. Ferrichrome in
Schizosaccharomyces pombe --an iron transport and iron storage compound.Biometals. 17 : 647-654. - Haas H. 2003. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage.
Appl. Microbiol. Biotechnol. 62 : 316-330. - Schwecke T, Gottling K, Durek P, Duenas I, Kaufer NF, Zock-Emmenthal S,
et al . 2006. Nonribosomal peptide synthesis inSchizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi.Chembiochem. 7 : 612-622. - Brault A, Mbuya B, Labbe S. 2022. Sib1, Sib2, and Sib3 proteins are required for ferrichrome-mediated cross-feeding interaction between
Schizosaccharomyces pombe andSaccharomyces cerevisiae .Front. Microbiol. 13 : 962853. - Pelletier B, Beaudoin J, Philpott CC, Labbe S. 2003. Fep1 represses expression of the fission yeast
Schizosaccharomyces pombe siderophore-iron transport system.Nucleic Acids Res. 31 : 4332-4344. - Plante S, Labbe S. 2019. Spore Germination requires ferrichrome biosynthesis and the siderophore transporter Str1 in
Schizosaccharomyces pombe .Genetics 211 : 893-911. - Yu C, Qi J, Han H, Wang P, Liu C. 2023. Progress in pathogenesis research of
Ustilago maydis , and the metabolites involved along with their biosynthesis.Mol. Plant Pathol. 24 : 495-509. - Budde AD, Leong SA. 1989. Characterization of siderophores from
Ustilago maydis .Mycopathologia 108 : 125-133. - Wang J, Budde AD, Leong SA. 1989. Analysis of ferrichrome biosynthesis in the phytopathogenic fungus
Ustilago maydis : cloning of an ornithine-N 5-oxygenase gene.J. Bacteriol. 171 : 2811-2818. - Mei B, Budde AD, Leong SA. 1993.
sid1 , a gene initiating siderophore biosynthesis inUstilago maydis : molecular characterization, regulation by iron, and role in phytopathogenicity.Proc. Natl. Acad. Sci. USA 90 : 903-907. - Yuan WM, Gentil GD, Budde AD, Leong SA. 2001. Characterization of the
Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster.J. Bacteriol. 183 : 4040-4051. - Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, Eichhorn H,
et al . 2010. Elucidation of the complete ferrichrome A biosynthetic pathway inUstilago maydis .Mol. Microbiol. 75 : 1260-1271. - Servouse M, Karst F. 1986. Regulation of early enzymes of ergosterol biosynthesis in
Saccharomyces cerevisiae .Biochem J. 240 : 541-547. - Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kämper J, Müller P,
et al . 2006. A ferroxidation/permeation iron uptake system is required for virulence inUstilago maydis .Plant Cell 18 : 3332-3345. - Antelo L, Hof C, Welzel K, Eisfeld K, Sterner O, Anke H. 2006. Siderophores produced by
Magnaporthe grisea in the presence and absence of iron.Z Naturforsch C J. Biosci. 61 : 461-464. - Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H. 2007. Ferricrocin synthesis in
Magnaporthe grisea and its role in pathogenicity in rice.Mol. Plant Pathol. 8 : 163-172. - Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H. 2009. Siderophore synthesis in is essential for vegetative growth, conidiation and resistance to oxidative stress.
Fungal Genet. Biol. 46 : 321-332. - Kwon-Chung KJ, Sugui JA. 2013.
Aspergillus fumigatus --what makes the species a ubiquitous human fungal pathogen?PLoS Pathog. 9 : e1003743. - Baddley JW, Stephens JM, Ji X, Gao X, Schlamm HT, Tarallo M. 2013. Aspergillosis in Intensive Care Unit (ICU) patients: epidemiology and economic outcomes.
BMC Infect. Dis. 13 : 29. - Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections.
Sci. Transl. Med. 4 : 165rv113. - Nilius AM, Farmer SG. 1990. Identification of extracellular siderophores of pathogenic strains of
Aspergillus fumigatus .J. Med. Vet. Mycol. 28 : 395-403. - Haas H. 2014. Fungal siderophore metabolism with a focus on
Aspergillus fumigatus .Nat. Prod. Rep. 31 : 1266-1276. - Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M,
et al . 2007. Distinct roles for intra- and extracellular siderophores duringAspergillus fumigatus infection.PLoS Pathog. 3 : 1195-1207. - Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM. 2005. The
Aspergillus fumigatus siderophore biosynthetic genesidA , encoding L-ornithineN 5-oxygenase, is required for virulence.Infect. Immun. 73 : 5493-5503. - Blatzer M, Schrettl M, Sarg B, Lindner HH, Pfaller K, Haas H. 2011. SidL, an
Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin.Appl. Environ. Microbiol. 77 : 4959-4966. - Yasmin S, Alcazar-Fuoli L, Grundlinger M, Puempel T, Cairns T, Blatzer M,
et al . 2012. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogenAspergillus fumigatus .Proc. Natl. Acad .Sci. USA 109 : E497-504. - Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID, Jochl C,
et al . 2010. HapX-mediated adaption to iron starvation is crucial for virulence ofAspergillus fumigatus .PLoS Pathog. 6 : e1001124. - Martinez-Pastor MT, Puig S. 2020. Adaptation to iron deficiency in human pathogenic fungi.
Biochim. Biophys. Acta Mol. Cell Res. 1867 : 118797. - Haas H, Eisendle M, Turgeon BG. 2008. Siderophores in fungal physiology and virulence.
Annu. Rev. Phytopathol. 46 : 149-187. - Mulvihill ED, Moloney NM, Owens RA, Dolan SK, Russell L, Doyle S. 2017. Functional Investigation of Iron-Responsive Microsomal Proteins, including MirC, in
Aspergillus fumigatus .Front. Microbiol. 8 : 418. - Park YS, Kim JY, Yun CW. 2016. Identification of ferrichrome- and ferrioxamine B-mediated iron uptake by
Aspergillus fumigatus .Biochem. J. 473 : 1203-1213. - Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B,
et al . 2003. Characterization of theAspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C.Biochem. J. 371 : 505-513. - Oberegger H, Schoeser M, Zadra I, Abt B, Haas H. 2001. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in
Aspergillus nidulans .Mol. Microbiol. 41 : 1077-1089. - Raymond-Bouchard I, Carroll CS, Nesbitt JR, Henry KA, Pinto LJ, Moinzadeh M,
et al . 2012. Structural requirements for the activity of the MirB ferrisiderophore transporter ofAspergillus fumigatus .Eukaryot. Cell 11 : 1333-1344. - Schrettl M, Kim HS, Eisendle M, Kragl C, Nierman WC, Heinekamp T,
et al . 2008. SreA-mediated iron regulation inAspergillus fumigatus .Mol. Microbiol. 70 : 27-43. - Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF. 2002. The siderophore iron transporter of
Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion.Infect. Immun. 70 : 5246-5255. - Ardon O, Bussey H, Philpott C, Ward DM, Davis-Kaplan S, Verroneau S,
et al . 2001. Identification of aCandida albicans ferrichrome transporter and its characterization by expression inSaccharomyces cerevisiae .J. Biol. Chem. 276 : 43049-43055. - Lesuisse E, Knight SA, Camadro JM, Dancis A. 2002. Siderophore uptake by
Candida albicans : effect of serum treatment and comparison withSaccharomyces cerevisiae .Yeast 19 : 329-340. - Nevitt T, Thiele DJ. 2011. Host iron withholding demands siderophore utilization for
Candida glabrata to survive macrophage killing.PLoS Pathog. 7 : e1001322. - Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, Dungan J,
et al . 2004. Regulatory networks affected by iron availability in.Mol. Microbiol. 53 : 1451-1469. - Chen CB, Pande K, French SD, Tuch BB, Noble SM. 2011. An iron homeostasis regulatory circuit with reciprocal roles in commensalism and pathogenesis.
Cell Host Microbe 10 : 118-135. - Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C,
et al . 2015.Candida albicans inhibitsPseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis.PLoS Pathog. 11 : e1005129. - Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J,
et al . 2023. Cryptococcal meningitis.Nat. Rev. Dis. Primers 9 : 62. - Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA, Griffiths EJ,
et al . 2011. Expanding fungal pathogenesis:Cryptococcus breaks out of the opportunistic box.Nat. Rev. Microbiol. 9 : 193-203. - Xue P, Hu G, Jung WH, Kronstad JW. 2023. Metals and the cell surface of
Cryptococcus neoformans .Curr. Opin. Microbiol. 74 : 102331. - Tangen KL, Jung WH, Sham AP, Lian T, Kronstad JW. 2007. The iron- and cAMP-regulated gene
SIT1 influences ferrioxamine B utilization, melanization and cell wall structure inCryptococcus neoformans .Microbiology 153 : 29-41. - Do E, Cho YJ, Kim D, Kronstad JW, Jung WH. 2020. A transcriptional regulatory map of iron homeostasis reveals a new control circuit for capsule formation in
Cryptococcus neoformans .Genetics 215 : 1171-1189. - Valdez AF, Miranda DZ, Guimaraes AJ, Nimrichter L, Nosanchuk JD. 2022. Pathogenicity & virulence of
Histoplasma capsulatum -A multifaceted organism adapted to intracellular environments.Virulence 13 : 1900-1919. - Howard DH, Rafie R, Tiwari A, Faull KF. 2000. Hydroxamate siderophores of
Histoplasma capsulatum .Infect. Immun. 68 : 2338-2343. - Hilty J, George Smulian A, Newman SL. 2011.
Histoplasma capsulatum utilizes siderophores for intracellular iron acquisition in macrophages.Med. Mycol. 49 : 633-642. - Hwang LH, Seth E, Gilmore SA, Sil A. 2012. SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen
Histoplasma capsulatum .Eukaryot. Cell 11 : 16-25. - Chao LY, Marletta MA, Rine J. 2008. Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen
Histoplasma capsulatum .Biochemistry 47 : 7274-7283. - Olivier LM, Krisans SK. 2000. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes.
Biochim. Biophys. Acta 1529 : 89-102. - Brechting PJ, Shah C, Rakotondraibe L, Shen Q, Rappleye CA. 2023.
Histoplasma capsulatum requires peroxisomes for multiple virulence functions including siderophore biosynthesis.mBio 14 : e0328422. - Mular A, Shanzer A, Kozlowski H, Hubmann I, Misslinger M, Krzywik J,
et al . 2021. Cyclic analogs of desferrioxamine E siderophore for 68Ga nuclear imaging: coordination chemistry and biological activity inStaphylococcus aureus .Inorg. Chem. 60 : 17846-17857. - Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. 2023. Fungal siderophore metabolism with a focus on
Aspergillus fumigatus : impact on biotic interactions and potential translational applications.Essays Biochem. 67 : 829-842. - Peukert C, Popat Gholap S, Green O, Pinkert L, van den Heuvel J, van Ham M,
et al . 2022. Enzyme-activated, chemiluminescent siderophore-dioxetane probes enable the selective and highly sensitive detection of bacterial pathogens.Angew. Chem Int. Ed Engl. 61 : e202201423. - Franken AC, Lokman BC, Ram AF, Punt PJ, van den Hondel CA, de Weert S. 2011. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi.
Appl. Microbiol. Biotechnol. 91 : 447-460. - Munawar A, Marshall JW, Cox RJ, Bailey AM, Lazarus CM. 2013. Isolation and characterisation of a ferrirhodin synthetase gene from the sugarcane pathogen
Fusarium sacchari .Chembiochem. 14 : 388-394. - Suzuki S, Fukuda K, Irie M, Hata Y. 2007. Iron chelated cyclic peptide, ferrichrysin, for oral treatment of iron deficiency: solution properties and efficacy in anemic rats.
Int. J. Vitam. Nutr. Res. 77 : 13-21. - Eisendle M, Schrettl M, Kragl C, Muller D, Illmer P, Haas H. 2006. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in
Aspergillus nidulans .Eukaryot. Cell 5 : 1596-1603. - Yamamoto S, Okujo N, Yoshida T, Matsuura S, Shinoda S. 1994. Structure and iron transport activity of vibrioferrin, a new siderophore of
Vibrio parahaemolyticus .J. Biochem. 115 : 868-874. - Konetschny-Rapp S, Jung G, Meiwes J, Zahner H. 1990. Staphyloferrin A: a structurally new siderophore from staphylococci.
Eur. J. Biochem. 191 : 65-74. - Budzikiewicz H. 2010. Microbial siderophores.
Fortschr. Chem. Org. Naturst. 92 : 1-75. - Pollack JR, Neilands JB. 1970. Enterobactin, an iron transport compound from
Salmonella typhimurium .Biochem. Biophys. Res. Commun. 38 : 989-992. - Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G,
et al . 2004. The structure of salmochelins: Cglucosylated enterobactins ofSalmonella enterica .Biometals 17 : 471-481. - Persmark M, Expert D, Neilands JB. 1989. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from
Erwinia chrysanthemi .J. Biol. Chem. 264 : 3187-3193. - Wake A, Misawa M, Matsui A. 1975. Siderochrome production by
Yersinia pestis and its relation to virulence.Infect. Immun. 12 : 1211-1213. - Cox CD, Rinehart KL Jr., Moore ML, Cook JC Jr. 1981. Pyochelin: novel structure of an iron-chelating growth promoter for
Pseudomonas aeruginosa .Proc. Natl. Acad. Sci. USA 78 : 4256-4260. - Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA. 1983. The structure of pyoverdine
Pa , the siderophore ofPseudomonas aeruginosa .Tetrahedron. Lett. 24 : 4877-4880. - Francis J, Madinaveitia J, Macturk HM, Snow GA. 1949. Isolation from acid-fast bacteria of a growth-factor for
Mycobacterium johnei and of a precursor of phthiocol.Nature 163 : 365-366. - Gibson F, Magrath DI. 1969. The isolation and characterization of a hydroxamic acid (aerobactin) formed by
Aerobacter aerogenes 62-I.Biochim. Biophys. Acta 192 : 175-184. - Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM,
et al . 1986. Characterization of anguibactin, a novel siderophore fromVibrio anguillarum 775(pJM1).J. Bacteriol. 167 : 57-65. - Lesuisse E, Simon-Casteras M, Labbe P. 1998. Siderophore-mediated iron uptake in: the
SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily.Microbiology 144 : 3455-3462. - Kim JH, Kim HW, Heo DH, Chang M, Baek IJ, Yun CW. 2009. FgEnd1 is a putative component of the endocytic machinery and mediates ferrichrome uptake in F.
graminearum. Curr. Genet. 55 : 593-600. - Park M, Cho YJ, Lee YW, Jung WH. 2017. Whole genome sequencing analysis of the cutaneous pathogenic yeast
Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff.Mycoses 60 : 188-197. - Cho YJ, Park M, Jung WH. 2019. Resequencing the genome of
Malassezia restricta strain KCTC 27527.Microbiol. Resour. Announc. 8 : e00213-19. - Srivastava VK, Suneetha KJ, Kaur R. 2014. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in
Candida glabrata .Biochem. J. 463 : 103-114. - Wortman JR, Gilsenan JM, Joardar V, Deegan J, Clutterbuck J, Andersen MR,
et al . 2009. The 2008 update of theAspergillus nidulans genome annotation: a community effort.Fungal Genet. Biol. 46 Suppl 1 : S2-13. - Attarian R, Hu G, Sanchez-Leon E, Caza M, Croll D, Do E,
et al . 2018. The monothiol glutaredoxin Grx4 regulates iron homeostasis and virulence inCryptococcus neoformans .mBio 9 : e02377-18.