Articles Service
Research article
Infection Density Dynamics and Phylogeny of Wolbachia Associated with Coconut Hispine Beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), by Multilocus Sequence Type (MLST) Genotyping
1State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China 2Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
Correspondence to:J. Microbiol. Biotechnol. 2018; 28(5): 796-808
Published May 28, 2018 https://doi.org/10.4014/jmb.1712.12019
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Introduction
Members of the family Chrysomelidae (Insecta: Coleoptera), also known as leaf beetles, are one of the most plentiful, diverse, and successful phytophagous Coleopteran insects, encompassing more than 35,000 species reported worldwide [1]. Owing to its devastating impacts on commercial and ornamental palm cultivation, the pest has garnered a lot of attention [2]. Among the Chrysomelidae family, the genus Brontispa has 22 described species, out of which 17 species have been reported causing considerable damage to various palm species [3].
Symbiotic associations among the metazoans are prevalent in nature. Insects, being the most diverse, successful, and plenteous animals on Earth have established a robust relationship with microbial symbionts [12]. Insects acquire their symbiotic microflora through maternal transmission (vertical transmission) or environmental transmission (horizontal transmission) [13]. Microbial symbionts play many critical roles in their host’s biology and evolution, ranging from food absorption, production of important nutrients [14] such as vitamins, amino acids, and cofactors [15], assistance to adopt new niches [16] or new host plants [17], manipulation of host reproduction (
The cytoplasmic inherited bacterium
The prevalence of
In the present study, we quantified the
Materials and Methods
Test Specimens
The specimens used in this report were collected from infested coconut palm trees (
DNA Extraction
Individuals from each mature larvae, 4-6 days old pupae, and 7-9 days old adults (female and male) were randomly selected from F2 or F3 generations, whereas a bunch of newly hatched eggs (≈50 eggs) were used for DNA extractions. Prior to DNA extractions, samples (3 individuals/sample) were washed three times with 75% alcohol and autoclaved double-distilled water. Adult beetles (1-week-old virgin male and female) were dissected for their body parts (head, thorax, and whole abdomen), gut, and reproductive tissues (ovary for female and testes for male) using sterile dissecting equipment, under the microscope, with phosphate buffer saline (PBS) (NaCl 8 g, KCl 0.2 g, Na2HPO4 1.42 g, KH2PO4 0.27 g, ultrapure water, pH 7.4). After dissection, samples were carefully transferred to new sterilized 1.5 ml tubes and homogenized in 180 µl of ATL (animal tissue lysis) buffer using high-throughput TissueLyser II (Qiagen: Cat No./ID: 85300 at 60 Hz for 5 min) homogenizer. Whole genomic DNA from the samples (eggs, larvae, pupae, and adult females and males) was extracted using a DNeasy Blood and Tissue Kit (Qiagen, USA) following the manufacturer’s recommendations with appropriate modifications. Briefly, 20 µl of proteinase K was added to the suspensions and incubated for more than 1 h at 56ºC. The final elution step was repeated two times in 50 µl of AE buffer. The purity and concentration of the DNA were quantified using a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA) and then run on agarose gel electrophoresis to assess its integrity.
Screening of Wolbachia by Diagnostic PCR
To interrogate the presence of
-
Table 1 . Primer pairs used in this study
Purpose Primer descriptions Primer code Primer Sequence 5’- 3’ Fragment length (bp) Ref. Universal bacterial primer 16S ribosomal RNA gene 27F
1492RAGAGTTTGATCCTGGCTCAG
GGTTACCTTGTTACGACTT≈1400 [9] Specific for Wolbachia Wolbachia surface proteinwsp81F
wsp691RTGGTCCAATAAGTGATGAAGAAAC
AAAAATTAAACGCTACTCCA≈600 [44] qPCR genes 5.8S ribosomal RNA 5.8S R-F
5.8S R-RAACGGTGGATCACTTGGTTC
ATACGACCCTCAGCCAGGAG≈151 This study Wolbachia surface proteinwspDi_qF3
wspDi_qR3AGGGCTTTACTCAAAATTGG
CACCAACGTATGGAGTGATAGG≈149 [48] MLST genes Glutamyl-tRNA(Gln) amidotransferase, subunit B gatB_F
gatB_RGAKTTAAAYCGYGCAGGBGTT
TGGYAAYTCRGGYAAAGATGA≈369 [43] Cytochrome c oxidase, subunit I coxA_F
coxA_RTTGGRGCRATYAACTTTATAG
CTAAAGACTTTKACRCCAGT≈402 Conserved hypothetical protein hcpA_F
hcpA_RGAAATARCAGTTGCTGCAAA
GAAAGTYRAGCAAGYTCTG≈444 Cell division protein ftsZ_F
ftsZ_RATYATGGARCATATAAARGATAG
TCRAGYAATGGATTRGATAT≈435 Fructose-bisphosphatealdolase fbpA_F
fbpA_RGCTGCTCCRCTTGGYWTGAT
CCRCCAGARAAAAYYACTATTC≈429
Cloning and Transformations of wsp and MLST Genes
PCRs were carried out to amplify the targeted regions of the
Analysis of Sequences Attained from MLST and wsp Genes
To estimate the origin and closest strains of
Assemblage and Phylogenetic Analysis
Phylogenetic analyses were performed on
Measuring the Wolbachia Density Dynamics through qPCR
qPCR was carried out to measure the relative density of
Statistical Analysis
Nucleotide Accession Numbers
All sequences from this study have been deposited to the NCBI GeneBank database under the accession numbers of MG345105 to MG345109 (
Results
Validation of Wolbachia Prevalence in the Life Stages, Body Parts, and Tissues of B. longissima
By mean of the diagnostic PCR approach with
-
Table 2 . Infection clads, supergroups, and phenotypic behaviors of
Wolbachia associated with various arthropod species based on thewsp gene sequence derived for phylogenetic analysis.Arthropod hosts with Wolbachia -associated strainsInfection clads Wolbachia supergroupPhenotypic actions wsp fragment lengthNCBI GenBank Acc. No. Aedes albopictus w AlbAMel A Cl 655 bp AF020058.1 Drosophila melanogaster w MelMel A Cl 674 bp AF020065.1 Amblyjoppa fuscipennis w FusFus A T 589 bp AF071909.1 Drosophila sechellia w HaHa A T 576 bp AF020073.1 Glossina morsitans w MorsMors A NK 564 bp AF020079.1 Cylindrepomus peregrinus w PerMors A T 564 bp AF071914.1 Ephestia kuehniella w KueKue A NK 561 bp AF071911.1 Muscidifurax uniraptor w UniUni A T 644 bp AF020071.1 Apis mellifera capensis w Cap-B1Cap-B1 B T 599 bp AF510085.1 Tribolium confusum w ConCon B Cl 555 bp AF020083 Laodelphax striatellus w StriCon B Cl 555 bp AF020080.1 Apoanagyrus diversicornis w DivDiv B T 543 bp AF071916.1 Trichogramma deion w DeiDei B T 555 bp AF020084.1 Thioalkalimicrobium sibericum w SibSib B T 555 bp AF071923.1 Trichogramma kaykai w KayBKay B T 555 bp AF071924.1 Culex pipiens w PipPip B Cl 603 bp KT964225.1 Diaphorina citri w DiDi B NK 600 bp KF680772.1 Armadillidium vulgare w VulVul B F 596 bp AF071917.1 Tagosodes orizicolus w OriOri B Cl 552 bp AF020085.1 Encarsia formosa w ForFor B T 546 bp AF071918.1 NCBI, National Center for Biotechnology Information;
wsp ,Wolbachia outer surface protein; NK, not known; T, Thelytoky; MK, Male killing; Cl, cytoplasmic incompatibility; F, Feminization.
-
Table 3 . Allelic compositions and accession numbers of
Wolbachia MLST genotyping (ST-483) and identification of hypervariable regions (HVRs) of theWolbachia surface protein (WSP) profile from various developmental stages ofB. longissima .Strain namea Strain IDb wsp (Accession No.)WSP profilec MLST profile (Accession no.) STd HVR1 HVR2 HVR3 HVR4 wsp gatB coxA hcpA ftsZ fbpA w LogE1842 MG345105 2 142 143 23 720 (158) MG553923 (266) MG553908 (6) MG553928 (234) MG553918 (302) MG553913 483 w LogL1843 MG345106 2 142 143 23 720 (158) MG553924 (266) MG553909 (6) MG553929 (234) MG553919 (302) MG553914 483 w LogP1844 MG345107 2 142 143 23 720 (158) MG553925 (266) MG553910 (6) MG553930 (234) MG553920 (302) MG553915 483 w LogF1845 MG345108 2 142 143 23 720 (158) MG553926 (266) MG553911 (6) MG553931 (234) MG553921 (302) MG553916 483 w LogM1846 MG345109 2 142 143 23 720 (158) MG553927 (266) MG553912 (6) MG553932 (234) MG553922 (302) MG553917 483 a
Wolbachia strain name assigned according to developmental stages ofB. longissima (w LogE for eggs,w LogL for larvae,w LogP for pupae,w LogF for female, andw LogM for male).b
Wolbachia strain identifier given by the MLST database.cPeptide haplotypes of four consecutive sections of WSP, each section including a hypervariable regions.
dSequencing type (ST) recognized as a unique allelic profile assigned through the MLST database.
Wolbachia Infection Dynamics through qPCR Assay
The qPCR primer pairs (wspDi_qF3 and wspDi_qR3 primers) specific for the
-
Fig. 1. Variations of
Wolbachia density inBrontispa longissima across developmental stages. The density ofWolbachia is calculated by the ratio between the number ofWolbachia genome relative to that ofB. longissima (evaluated by qPCR). At least three biological replicates were run for each developmental stage to quantify the infection density. Tukey’s HSD post hoc test was used for multiple comparison at thep < 0.05 level; the different alphabets indicate the significance level of all tested developmental stages.
-
Fig. 2. Variations of
Wolbachia density in different body parts and tissues ofB. longissima . The density ofWolbachia is calculated by the ratio between the number ofWolbachia genome relative to that of theB. longissima (evaluated by qPCR). At least three biological replicates were run for each developmental stage to quantify the infection density. Tukey’s HSD post hoc test was used for multiple comparison at thep < 0.05 level; the different alphabets indicate the significance level of all tested body parts.
Phylogenetic Analysis and Group Interference
The supergroup A or B specific primers (Table S1) inferred the single infection of
-
Fig. 3. Phylogenetic placement of
Wolbachia strains fromB. longissima (w LogE for eggs,w LogL for larvae,w LogP for pupae,w LogF for female, andw LogM for male) (bold) with knownWolbachia symbionts from various arthropods, as constructed by the maximum likelihood (ML) program using MEGA (ver. 5.05). (A) ML phylogenetic tree of thewsp gene (≈ 600 bp) with (20 nucleotide sequence) 8/20 and 12/20 sequence of supergroup A and B, respectively, from various arthropods assembled and aligned together for phylogenetic analysis. Nomenclature ofWolbachia strains and groups are according to their names of host species from which they were identified. The letters A and B indicate theWolbachia supergroups. (B) ML phylogenetic tree of concatenated MLST data (2,073 or 2,079 bp). Phylogeny showing relatedness ofB. longissima (ST-483) (bold) withWolbachia -mediated arthropods (a total of 13 sequence) 5/13, 5/13, 1/13, 1/13, and 1/13 nucleotide sequence belonging toWolbachia supergroups A, B, H, F, and D, respectively. Alphabet letters (A, B, H, F, and D) indicate differentWolbachia supergroups. AllWolbachia MLST strains were retrieved from the MLST database (http://pubmlst.org/wolbachia/).
Discussions
Here, we have provided the first comprehensive quantification analysis of
Numerous studies have put forward explanations for the observed variations in the infection density of
In the recent few years, most of the research focus has increased regarding
Evidence is mounting on the various phenotypic behaviors of
Supplemental Materials
Acknowledgments
We are very grateful for the grants from the National Key R & D Program of China (2017YFC1200605) and Fujian Science and Technology Special Project (2017NZ0003-1-6).
Conflict of Interest
The authors have no financial conflicts of interest to declare.
References
- Jolivet P, Santiago-Blay JA, Schmitt M (eds). 2008. Research on Chrysomelidae. Jolivet P, Santiago-Blay JA, Schmitt M (eds). Brill Leiden, The Netherlands.
- Wesseler J, Fall EH. 2010. Potential damage costs of
Diabrotica virgifera virgifera infestation in Europe - the 'no control' scenario.J. Appl. Entomol. 134 : 385-394. - Staines C. Catalog of the hispines of the World (Coleoptera: Chrysomelidae: Cassidinae). Tribe Cryptonychini, 2012. Online publication available from http://entomology.si.edu/Collections_Coleoptera-Hispines.html. last accessed January 2014.
- Konishi K, Nakamura S, Takasu K. Invasion of the coconut hispine beetle,
Brontispa longissima : current situation and control measures in Asia. Presented at the NIAES International Symposium 2007, October 22-23, 2007. Epochal Tsukuba, Japan. - Sugeno W, Kawazu K, Takano S, Nakamura S, Mochizuki A. 2011. Suitability of monocots for rearing alien coconut pest
Brontispa longissima (Coleoptera: Chrysomelidae).Ann. Entomol. Soc. Am. 104 : 682-687. - Lu Y, Zeng L, Wang L, Zhou R. 2003. Risk analysis of palm leaf beetle
Brontispa longissima (Gestro).Entomol. J. East Chin. 13 : 17-20. - Zhang X, Tang B, Hou Y. 2015. A rapid diagnostic technique to discriminate between two pests of palms,
Brontispa longissima andOctodonta nipae (Coleoptera: Chrysomelidae), for quarantine applications.J. Econ. Entomol. 108 : 95-99. - Yamashita A, Takasu K. 2010. Suitability of potential host plants in Japan for immature development of the coconut hispine beetle,
Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae).Japan Agric. Res. Q. 44 : 143-149. - Hou Y, Miao Y, Zhang Z. 2014. Study on life parameters of the invasive species
Octodonta nipae (Coleoptera: Chrysomelidae) on different palm species, under laboratory conditions.J. Econ. Entomol. 107 : 1486-1495. - Wu Q, Zeng L, Sun J-C, Liang G, Lu Y. 2006. Control efficiency of
Metarhizium anisopliae onBrontispal longissima (Gestro) in field.J. Shandong Agric. Univ. 37 : 568. - Zhong M, Shen Z-R. 2004. Infection of the endosymbiont
Wolbachia in population ofTrichogramma evanescens in China.Acta Entomol. Sin. 6 : 732-737. - Harris HL, Brennan LJ, Keddie BA, Braig HR. 2010. Bacterial symbionts in insects: balancing life and death.
Symbiosis 51 : 37-53. - Mason CJ, Raffa KF. 2014. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae.
Environ. Entomol. 43 : 595-604. - Dillon R, Dillon V. 2004. The gut bacteria of insects: nonpathogenic interactions.
Annu. Rev. Entomol. 49 : 71-92. - Douglas AE. 2009. The microbial dimension in insect nutritional ecology.
Funct. Ecol. 23 : 38-47. - Moya A, Peretó J, Gil R, Latorre A. 2008. Learning how to live together: genomic insights into prokaryote-animal symbioses.
Nat. Rev. Genet. 9 : 218-229. - Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. 2006. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria.
PLoS Biol. 4 : e337. - Yen JH, Barr AR. 1973. The etiological agent of cytoplasmic incompatibility in
Culex pipiens .J. Invertebr. Pathol. 22 : 242-250. - Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ. 2010. Adaptation via symbiosis: recent spread of a
Drosophila defensive symbiont.Science 329 : 212-215. - Lu F, Kang X, Lorenz G, Espino L, Jiang M, Way MO. 2014. Culture-independent analysis of bacterial communities in the gut of rice water weevil (Coleoptera: Curculionidae).
Ann. Entomol. Soc. Am. 107 : 592-600. - Pernice M, Simpson SJ, Ponton F. 2014. Towards an integrated understanding of gut microbiota using insects as model systems.
J. Insect Physiol. 69 : 12-18. - Mouton L, Henri H, Bouletreau M, Vavre F. 2003. Strainspecific regulation of intracellular
Wolbachia density in multiply infected insects.Mol. Ecol. 12 : 3459-3465. - Koga R, Tsuchida T, Fukatsu T. 2003. Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont
Buchnera in an aphid.Proc. R. Soc. Lond. B 270 : 2543-2550. - Hoffmann A, Turelli M. 1997. Cytoplasmic incompatibility in insects, pp. 42-80.
In: O'Neill SL, Werren JH, Hoffmann AA (eds),Influential Passengers . Oxford University Press, New York. - Bouchon D, Rigaud T, Juchault P. 1998. Evidence for widespread
Wolbachia infection in isopod crustaceans: molecular identification and host feminization.Proc. R. Soc. Lond. B 265 : 1081-1090. - Fialho RF, Stevens L. 2000. Male-killing
Wolbachia in a flour beetle.Proc. R. Soc. Lond. B 267 : 1469-1473. - Pannebakker BA, Pijnacker LP, Zwaan BJ, Beukeboom LW. 2004. Cytology of
Wolbachia -induced parthenogenesis inLeptopilina clavipes (Hymenoptera: Figitidae).Genome 47 : 299-303. - Werren JH. 1997. Biology of
Wolbachia .Annu. Rev. Entomol. 42 : 587-609. - Jiggins FM, Bentley JK, Majerus ME, Hurst GD. 2001. How many species are infected with
Wolbachia ? Cryptic sex ratio distorters revealed to be common by intensive sampling.Proc. R. Soc. Lond. B 268 : 1123-1126. - Jeyaprakash A, Hoy M. 2000. Long PCR improves
Wolbachia DNA amplification:wsp sequences found in 76% of sixtythree arthropod species.Insect Mol. Biol. 9 : 393-405. - Werren JH, Windsor DM. 2000.
Wolbachia infection frequencies in insects: evidence of a global equilibrium?Proc. R. Soc. Lond. B 267 : 1277-1285. - Werren JH, Windsor D, Guo L. 1995. Distribution of
Wolbachia among neotropical arthropods.Proc. R. Soc. Lond. B 262 : 197-204. - Oh HW, Kim MG, Shin SW, Bae KS, Ahn YJ, Park HY. 2000. Ultrastructural and molecular identification of a
Wolbachia endosymbiont in a spider,Nephila clavata .Insect Mol. Biol. 9 : 539-543. - Tsuchida T, Koga R, Fukatsu T. 2004. Host plant specialization governed by facultative symbiont.
Science 303 : 1989. - Bordenstein SR, Paraskevopoulos C, Hotopp JCD, Sapountzis P, Lo N, Bandi C,
et al . 2009. Parasitism and mutualism inWolbachia : what the phylogenomic trees can and cannot say.Mol. Biol. Evol. 26 : 231-241. - Salunke BK, Salunkhe RC, Patole MS, Shouche YS. 2010.
Wolbachia and termite association: present status and future implications.J. Biosci. 35 : 171-175. - Ali H, Hou Y, Tang B, Shi ZH, Huang B, Muhammad A,
et al . 2016. A way of reproductive manipulation and biology ofWolbachia pipientis .J. Exp. Biol. Agric. Sci. 4 : 156-168. - Werren JH, Zhang W, Guo LR. 1995. Evolution and phylogeny of
Wolbachia : reproductive parasites of arthropods.Proc. R. Soc. Lond. B 261 : 55-63. - Vandekerckhove TT, Watteyne S, Willems A, Swings JG, Mertens J, Gillis M. 1999. Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium
Wolbachia from the novel hostFolsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy.FEMS Microbiol. Lett. 180 : 279-286. - Rowley SM, Raven RJ, McGraw EA. 2004.
Wolbachia pipientis in Australian spiders.Curr. Microbiol. 49 : 208-214. - Casiraghi M, Bordenstein S, Baldo L, Lo N, Beninati T, Wernegreen J,
et al . 2005. Phylogeny ofWolbachia pipientis based ongltA ,groEL andftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in theWolbachia tree.Microbiology 151 : 4015-4022. - Lo N, Paraskevopoulos C, Bourtzis K, O'Neill S, Werren J, Bordenstein S,
et al . 2007. Taxonomic status of the intracellular bacteriumWolbachia pipientis .Int. J. Syst. Evol. Microbiol. 57 : 654-657. - Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR,
et al . 2006. Multilocus sequence typing system for the endosymbiontWolbachia pipientis .Appl. Environ. Microbiol. 72 : 7098-7110. - Zhou W, Rousset F, O'Neill S. 1998. Phylogeny and PCRbased classification of
Wolbachia strains usingwsp gene sequences.Proc. R. Soc. Lond. B 265 : 509-515. - Kaakeh W. 2005. Longevity, fecundity, and fertility of the red palm weevil,
Rynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) on natural and artificial diets.Emirates J. Agric. Sci. 17 : 23-33. - Avtzis DN, Doudoumis V, Bourtzis K. 2014.
Wolbachia infections and mitochondrial diversity of two chestnut feeding Cydia species.PLoS One 9 : e112795. - Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Mol. Biol. Evol. 28 : 2731-2739. - Hoffmann M, Coy M, Pelz-Stelinski K. 2014.
Wolbachia infection density in populations of the Asian citrus psyllid (Hemiptera: Liviidae).Environ. Entomol. 43 : 1215-1222. - Kyei-Poku G, Colwell D, Coghlin P, Benkel B, Floate K. 2005. On the ubiquity and phylogeny of
Wolbachia in lice.Mol. Ecol. 14 : 285-294. - Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. 2002. How many
Wolbachia supergroups exist?Mol. Biol. Evol. 19 : 341-346. - Hamm CA, Begun DJ, Vo A, Smith CC, Saelao P, Shaver AO,
et al . 2014.Wolbachia do not live by reproductive manipulation alone: infection polymorphism inDrosophila suzukii andD. subpulchrella .Mol. Ecol. 23 : 4871-4885. - Liu Y, Zhang Y, Jiang Q, Rao M, Sheng Z, Zhang Y,
et al . 2015. Identification of valid housekeeping genes for realtime quantitative PCR analysis of collapsed lung tissues of neonatal somatic cell nuclear transfer-derived cattle.Cell. Reprogram. 17 : 360-367. - Sun W, Jin Y, He L, Lu W-C, Li M. 2010. Suitable reference gene selection for different strains and developmental stages of the carmine spider mite,
Tetranychus cinnabarinus , using quantitative real-time PCR.J. Insect Sci. 10 : 208. - Song H, Zhang X, Shi C, Wang S, Wu A, Wei C. 2016. Selection and verification of candidate reference genes for mature microRNA expression by quantitative RT-PCR in the tea plant (
Camellia sinensis ).Genes 7 : 25. - Bustin SA. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.
J. Mol. Endocrinol. 25 : 169-193. - Ming Q-L, Shen J-F, Cheng C, Liu C-M, Feng Z-J. 2015.
Wolbachia infection dynamics inTribolium confusum (Coleoptera: Tenebrionidae) and their effects on host mating behavior and reproduction.J. Econ. Entomol. 108 : 1408-1415. - Dossi FCA, da Silva EP, Cônsoli FL. 2014. Population dynamics and growth rates of endosymbionts during
Diaphorina citri (Hemiptera, Liviidae) ontogeny.Microb. Ecol. 68 : 881-889. - Rousset F, Braig HR, O'Neill SL. 1999. A stable triple
Wolbachia infection inDrosophila with nearly additive incompatibility effects.Heredity 82 : 620-627. - Noda H, Koizumi Y, Zhang Q, Deng K. 2001. Infection density of
Wolbachia and incompatibility level in two planthopper species,Laodelphax striatellus andSogatella furcifera .Insect Biochem. Mol. Biol. 31 : 727-737. - Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F,
et al . 1999.Wolbachia infections are distributed throughout insect somatic and germ line tissues.Insect Biochem. Mol. Biol. 29 : 153-160. - Kose H, Karr TL. 1995. Organization of
Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody.Mech. Dev. 51 : 275-288. - Serbus LR, Sullivan W. 2007. A cellular basis for
Wolbachia recruitment to the host germline.PLoS Pathog. 3 : e190. - Kondo N, Shimada M, Fukatsu T. 1999. High prevalence of
Wolbachia in the azuki bean beetleCallosobruchus chinensis (Coleoptera, Bruchidae).Zool. Sci. 16 : 955-962. - Cheng Q, Ruel T, Zhou W, Moloo S, Majiwa P, O'Neill S,
et al . 2000. Tissue distribution and prevalence ofWolbachia infections in tsetse flies, Glossina spp.Med. Vet. Entomol. 14 : 44-50. - Rożek M, Lachowska D, Holecovà M, Kajtoch Ł. 2009. Karyology of parthenogenetic weevils (Coleoptera, Curculionidae): do meiotic prophase stages occur?
Micron 40 : 881-885. - Toju H, Fukatsu T. 2011. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants.
Mol. Ecol. 20 : 853-868. - Rasgon JL, Scott TW. 2004. Phylogenetic characterization of
Wolbachia symbionts infectingCimex lectularius L. andOeciacus vicarius Horvath (Hemiptera: Cimicidae).J. Med. Entomol. 41 : 1175-1178. - Lachowska D, Kajtoch Ł, Knutelski S. 2010. Occurrence of
Wolbachia in central European weevils: correlations with host systematics, ecology, and biology.Entomol. Exp. Appl. 135 : 105-118. - Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. 2004.
Wolbachia -induced cytoplasmic incompatibility as a means for insect pest population control.Proc. Natl. Acad. Sci. USA 101 : 15042-15045. - Bourtzis K. 2008.
Wolbachia -based technologies for insect pest population control.Adv. Exp. Med. Biol. 627 : 104-113. - Calvitti M, Moretti R, Lampazzi E, Bellini R, Dobson SL. 2010. Characterization of a new
Aedes albopictus (Diptera: Culicidae)-Wolbachia pipientis (Rickettsiales: Rickettsiaceae) symbiotic association generated by artificial transfer of the wPip strain fromCulex pipiens (Diptera: Culicidae).J. Med. Entomol. 47 : 179-187. - Walker T, Johnson P, Moreira L, Iturbe-Ormaetxe I, Frentiu F, McMeniman C,
et al . 2011. The wMelWolbachia strain blocks dengue and invades cagedAedes aegypti populations.Nature 476 : 450-453. - Hoffmann AA, Ross PA, Rašić G. 2015.
Wolbachia strains for disease control: ecological and evolutionary considerations.Evol. Appl. 8 : 751-768. - Merçot H, Charlat S. 2004.
Wolbachia infections inDrosophila melanogaster andD. simulans : polymorphism and levels of cytoplasmic incompatibility.Genetica 120 : 51-59. - Cross HF, Haarbrink M, Egerton G, Yazdanbakhsh M, Taylor MJ. 2001. Severe reactions to filarial chemotherapy and release of
Wolbachia endosymbionts into blood.Lancet 358 : 1873-1875. - Saint André Av, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L,
et al . 2002. The role of endosymbioticWolbachia bacteria in the pathogenesis of river blindness.Science 295 : 1892-1895.
Related articles in JMB

Article
Research article
J. Microbiol. Biotechnol. 2018; 28(5): 796-808
Published online May 28, 2018 https://doi.org/10.4014/jmb.1712.12019
Copyright © The Korean Society for Microbiology and Biotechnology.
Infection Density Dynamics and Phylogeny of Wolbachia Associated with Coconut Hispine Beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), by Multilocus Sequence Type (MLST) Genotyping
Habib Ali1,2, Abrar Muhammad1,2, and Youming Hou1,2*
1State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China 2Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
Correspondence to:Youming Hou
ymhou@fafu.edu.cn
Abstract
The intracellular bacterium Wolbachia pipientis is widespread in arthropods. Recently, possibilities of novel Wolbachia-mediated hosts, their distribution, and natural rate have been anticipated, and the coconut leaf beetle Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), which has garnered attention as a serious pest of palms, was subjected to this interrogation. By adopting Wolbachia surface protein (wsp) and multilocus sequence type (MLST) genotypic systems, we determined the Wolbachia infection density within host developmental stages, body parts, and tissues, and the results revealed that all the tested samples of B. longissima were infected with the same Wolbachia strain (wLog), suggesting complete vertical transmission. The MLST profile elucidated two new alleles (ftsZ-234 and coxA-266) that define a new sequence type (ST-483), which indicates the particular genotypic association of B. longissima and Wolbachia. The quantitative real-time PCR analysis revealed a higher infection density in the eggs and adult stage, followed by the abdomen and reproductive tissues, respectively. However, no significant differences were observed in the infection density between sexes. Moreover, the wsp and concatenated MLST alignment analysis of this study with other known Wolbachia-mediated arthropods revealed similar clustering with distinct monophyletic supergroup B. This is the first comprehensive report on the prevalence, infection dynamics, and phylogeny of the Wolbachia endosymbiont in B. longissima, which demonstrated that Wolbachia is ubiquitous across all developmental stages and distributed in the entire body of B. longissima. Understanding the Wolbachia infection dynamics would provide useful insight to build a framework for future investigations, understand its impacts on host physiology, and exploit it as a potential biocontrol agent.
Keywords: Wolbachia, Brontispa longissima, quantitative PCR, MLST, biocontrol agent, symbiont-host interactions
Introduction
Members of the family Chrysomelidae (Insecta: Coleoptera), also known as leaf beetles, are one of the most plentiful, diverse, and successful phytophagous Coleopteran insects, encompassing more than 35,000 species reported worldwide [1]. Owing to its devastating impacts on commercial and ornamental palm cultivation, the pest has garnered a lot of attention [2]. Among the Chrysomelidae family, the genus Brontispa has 22 described species, out of which 17 species have been reported causing considerable damage to various palm species [3].
Symbiotic associations among the metazoans are prevalent in nature. Insects, being the most diverse, successful, and plenteous animals on Earth have established a robust relationship with microbial symbionts [12]. Insects acquire their symbiotic microflora through maternal transmission (vertical transmission) or environmental transmission (horizontal transmission) [13]. Microbial symbionts play many critical roles in their host’s biology and evolution, ranging from food absorption, production of important nutrients [14] such as vitamins, amino acids, and cofactors [15], assistance to adopt new niches [16] or new host plants [17], manipulation of host reproduction (
The cytoplasmic inherited bacterium
The prevalence of
In the present study, we quantified the
Materials and Methods
Test Specimens
The specimens used in this report were collected from infested coconut palm trees (
DNA Extraction
Individuals from each mature larvae, 4-6 days old pupae, and 7-9 days old adults (female and male) were randomly selected from F2 or F3 generations, whereas a bunch of newly hatched eggs (≈50 eggs) were used for DNA extractions. Prior to DNA extractions, samples (3 individuals/sample) were washed three times with 75% alcohol and autoclaved double-distilled water. Adult beetles (1-week-old virgin male and female) were dissected for their body parts (head, thorax, and whole abdomen), gut, and reproductive tissues (ovary for female and testes for male) using sterile dissecting equipment, under the microscope, with phosphate buffer saline (PBS) (NaCl 8 g, KCl 0.2 g, Na2HPO4 1.42 g, KH2PO4 0.27 g, ultrapure water, pH 7.4). After dissection, samples were carefully transferred to new sterilized 1.5 ml tubes and homogenized in 180 µl of ATL (animal tissue lysis) buffer using high-throughput TissueLyser II (Qiagen: Cat No./ID: 85300 at 60 Hz for 5 min) homogenizer. Whole genomic DNA from the samples (eggs, larvae, pupae, and adult females and males) was extracted using a DNeasy Blood and Tissue Kit (Qiagen, USA) following the manufacturer’s recommendations with appropriate modifications. Briefly, 20 µl of proteinase K was added to the suspensions and incubated for more than 1 h at 56ºC. The final elution step was repeated two times in 50 µl of AE buffer. The purity and concentration of the DNA were quantified using a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA) and then run on agarose gel electrophoresis to assess its integrity.
Screening of Wolbachia by Diagnostic PCR
To interrogate the presence of
-
Table 1 . Primer pairs used in this study.
Purpose Primer descriptions Primer code Primer Sequence 5’- 3’ Fragment length (bp) Ref. Universal bacterial primer 16S ribosomal RNA gene 27F
1492RAGAGTTTGATCCTGGCTCAG
GGTTACCTTGTTACGACTT≈1400 [9] Specific for Wolbachia Wolbachia surface proteinwsp81F
wsp691RTGGTCCAATAAGTGATGAAGAAAC
AAAAATTAAACGCTACTCCA≈600 [44] qPCR genes 5.8S ribosomal RNA 5.8S R-F
5.8S R-RAACGGTGGATCACTTGGTTC
ATACGACCCTCAGCCAGGAG≈151 This study Wolbachia surface proteinwspDi_qF3
wspDi_qR3AGGGCTTTACTCAAAATTGG
CACCAACGTATGGAGTGATAGG≈149 [48] MLST genes Glutamyl-tRNA(Gln) amidotransferase, subunit B gatB_F
gatB_RGAKTTAAAYCGYGCAGGBGTT
TGGYAAYTCRGGYAAAGATGA≈369 [43] Cytochrome c oxidase, subunit I coxA_F
coxA_RTTGGRGCRATYAACTTTATAG
CTAAAGACTTTKACRCCAGT≈402 Conserved hypothetical protein hcpA_F
hcpA_RGAAATARCAGTTGCTGCAAA
GAAAGTYRAGCAAGYTCTG≈444 Cell division protein ftsZ_F
ftsZ_RATYATGGARCATATAAARGATAG
TCRAGYAATGGATTRGATAT≈435 Fructose-bisphosphatealdolase fbpA_F
fbpA_RGCTGCTCCRCTTGGYWTGAT
CCRCCAGARAAAAYYACTATTC≈429
Cloning and Transformations of wsp and MLST Genes
PCRs were carried out to amplify the targeted regions of the
Analysis of Sequences Attained from MLST and wsp Genes
To estimate the origin and closest strains of
Assemblage and Phylogenetic Analysis
Phylogenetic analyses were performed on
Measuring the Wolbachia Density Dynamics through qPCR
qPCR was carried out to measure the relative density of
Statistical Analysis
Nucleotide Accession Numbers
All sequences from this study have been deposited to the NCBI GeneBank database under the accession numbers of MG345105 to MG345109 (
Results
Validation of Wolbachia Prevalence in the Life Stages, Body Parts, and Tissues of B. longissima
By mean of the diagnostic PCR approach with
-
Table 2 . Infection clads, supergroups, and phenotypic behaviors of
Wolbachia associated with various arthropod species based on thewsp gene sequence derived for phylogenetic analysis..Arthropod hosts with Wolbachia -associated strainsInfection clads Wolbachia supergroupPhenotypic actions wsp fragment lengthNCBI GenBank Acc. No. Aedes albopictus w AlbAMel A Cl 655 bp AF020058.1 Drosophila melanogaster w MelMel A Cl 674 bp AF020065.1 Amblyjoppa fuscipennis w FusFus A T 589 bp AF071909.1 Drosophila sechellia w HaHa A T 576 bp AF020073.1 Glossina morsitans w MorsMors A NK 564 bp AF020079.1 Cylindrepomus peregrinus w PerMors A T 564 bp AF071914.1 Ephestia kuehniella w KueKue A NK 561 bp AF071911.1 Muscidifurax uniraptor w UniUni A T 644 bp AF020071.1 Apis mellifera capensis w Cap-B1Cap-B1 B T 599 bp AF510085.1 Tribolium confusum w ConCon B Cl 555 bp AF020083 Laodelphax striatellus w StriCon B Cl 555 bp AF020080.1 Apoanagyrus diversicornis w DivDiv B T 543 bp AF071916.1 Trichogramma deion w DeiDei B T 555 bp AF020084.1 Thioalkalimicrobium sibericum w SibSib B T 555 bp AF071923.1 Trichogramma kaykai w KayBKay B T 555 bp AF071924.1 Culex pipiens w PipPip B Cl 603 bp KT964225.1 Diaphorina citri w DiDi B NK 600 bp KF680772.1 Armadillidium vulgare w VulVul B F 596 bp AF071917.1 Tagosodes orizicolus w OriOri B Cl 552 bp AF020085.1 Encarsia formosa w ForFor B T 546 bp AF071918.1 NCBI, National Center for Biotechnology Information;
wsp ,Wolbachia outer surface protein; NK, not known; T, Thelytoky; MK, Male killing; Cl, cytoplasmic incompatibility; F, Feminization..
-
Table 3 . Allelic compositions and accession numbers of
Wolbachia MLST genotyping (ST-483) and identification of hypervariable regions (HVRs) of theWolbachia surface protein (WSP) profile from various developmental stages ofB. longissima ..Strain namea Strain IDb wsp (Accession No.)WSP profilec MLST profile (Accession no.) STd HVR1 HVR2 HVR3 HVR4 wsp gatB coxA hcpA ftsZ fbpA w LogE1842 MG345105 2 142 143 23 720 (158) MG553923 (266) MG553908 (6) MG553928 (234) MG553918 (302) MG553913 483 w LogL1843 MG345106 2 142 143 23 720 (158) MG553924 (266) MG553909 (6) MG553929 (234) MG553919 (302) MG553914 483 w LogP1844 MG345107 2 142 143 23 720 (158) MG553925 (266) MG553910 (6) MG553930 (234) MG553920 (302) MG553915 483 w LogF1845 MG345108 2 142 143 23 720 (158) MG553926 (266) MG553911 (6) MG553931 (234) MG553921 (302) MG553916 483 w LogM1846 MG345109 2 142 143 23 720 (158) MG553927 (266) MG553912 (6) MG553932 (234) MG553922 (302) MG553917 483 a
Wolbachia strain name assigned according to developmental stages ofB. longissima (w LogE for eggs,w LogL for larvae,w LogP for pupae,w LogF for female, andw LogM for male)..b
Wolbachia strain identifier given by the MLST database..cPeptide haplotypes of four consecutive sections of WSP, each section including a hypervariable regions..
dSequencing type (ST) recognized as a unique allelic profile assigned through the MLST database..
Wolbachia Infection Dynamics through qPCR Assay
The qPCR primer pairs (wspDi_qF3 and wspDi_qR3 primers) specific for the
-
Figure 1. Variations of
Wolbachia density inBrontispa longissima across developmental stages. The density ofWolbachia is calculated by the ratio between the number ofWolbachia genome relative to that ofB. longissima (evaluated by qPCR). At least three biological replicates were run for each developmental stage to quantify the infection density. Tukey’s HSD post hoc test was used for multiple comparison at thep < 0.05 level; the different alphabets indicate the significance level of all tested developmental stages.
-
Figure 2. Variations of
Wolbachia density in different body parts and tissues ofB. longissima . The density ofWolbachia is calculated by the ratio between the number ofWolbachia genome relative to that of theB. longissima (evaluated by qPCR). At least three biological replicates were run for each developmental stage to quantify the infection density. Tukey’s HSD post hoc test was used for multiple comparison at thep < 0.05 level; the different alphabets indicate the significance level of all tested body parts.
Phylogenetic Analysis and Group Interference
The supergroup A or B specific primers (Table S1) inferred the single infection of
-
Figure 3. Phylogenetic placement of
Wolbachia strains fromB. longissima (w LogE for eggs,w LogL for larvae,w LogP for pupae,w LogF for female, andw LogM for male) (bold) with knownWolbachia symbionts from various arthropods, as constructed by the maximum likelihood (ML) program using MEGA (ver. 5.05). (A) ML phylogenetic tree of thewsp gene (≈ 600 bp) with (20 nucleotide sequence) 8/20 and 12/20 sequence of supergroup A and B, respectively, from various arthropods assembled and aligned together for phylogenetic analysis. Nomenclature ofWolbachia strains and groups are according to their names of host species from which they were identified. The letters A and B indicate theWolbachia supergroups. (B) ML phylogenetic tree of concatenated MLST data (2,073 or 2,079 bp). Phylogeny showing relatedness ofB. longissima (ST-483) (bold) withWolbachia -mediated arthropods (a total of 13 sequence) 5/13, 5/13, 1/13, 1/13, and 1/13 nucleotide sequence belonging toWolbachia supergroups A, B, H, F, and D, respectively. Alphabet letters (A, B, H, F, and D) indicate differentWolbachia supergroups. AllWolbachia MLST strains were retrieved from the MLST database (http://pubmlst.org/wolbachia/).
Discussions
Here, we have provided the first comprehensive quantification analysis of
Numerous studies have put forward explanations for the observed variations in the infection density of
In the recent few years, most of the research focus has increased regarding
Evidence is mounting on the various phenotypic behaviors of
Supplemental Materials
Acknowledgments
We are very grateful for the grants from the National Key R & D Program of China (2017YFC1200605) and Fujian Science and Technology Special Project (2017NZ0003-1-6).
Conflict of Interest
The authors have no financial conflicts of interest to declare.
Fig 1.

Fig 2.

Fig 3.

-
Table 1 . Primer pairs used in this study.
Purpose Primer descriptions Primer code Primer Sequence 5’- 3’ Fragment length (bp) Ref. Universal bacterial primer 16S ribosomal RNA gene 27F
1492RAGAGTTTGATCCTGGCTCAG
GGTTACCTTGTTACGACTT≈1400 [9] Specific for Wolbachia Wolbachia surface proteinwsp81F
wsp691RTGGTCCAATAAGTGATGAAGAAAC
AAAAATTAAACGCTACTCCA≈600 [44] qPCR genes 5.8S ribosomal RNA 5.8S R-F
5.8S R-RAACGGTGGATCACTTGGTTC
ATACGACCCTCAGCCAGGAG≈151 This study Wolbachia surface proteinwspDi_qF3
wspDi_qR3AGGGCTTTACTCAAAATTGG
CACCAACGTATGGAGTGATAGG≈149 [48] MLST genes Glutamyl-tRNA(Gln) amidotransferase, subunit B gatB_F
gatB_RGAKTTAAAYCGYGCAGGBGTT
TGGYAAYTCRGGYAAAGATGA≈369 [43] Cytochrome c oxidase, subunit I coxA_F
coxA_RTTGGRGCRATYAACTTTATAG
CTAAAGACTTTKACRCCAGT≈402 Conserved hypothetical protein hcpA_F
hcpA_RGAAATARCAGTTGCTGCAAA
GAAAGTYRAGCAAGYTCTG≈444 Cell division protein ftsZ_F
ftsZ_RATYATGGARCATATAAARGATAG
TCRAGYAATGGATTRGATAT≈435 Fructose-bisphosphatealdolase fbpA_F
fbpA_RGCTGCTCCRCTTGGYWTGAT
CCRCCAGARAAAAYYACTATTC≈429
-
Table 2 . Infection clads, supergroups, and phenotypic behaviors of
Wolbachia associated with various arthropod species based on thewsp gene sequence derived for phylogenetic analysis..Arthropod hosts with Wolbachia -associated strainsInfection clads Wolbachia supergroupPhenotypic actions wsp fragment lengthNCBI GenBank Acc. No. Aedes albopictus w AlbAMel A Cl 655 bp AF020058.1 Drosophila melanogaster w MelMel A Cl 674 bp AF020065.1 Amblyjoppa fuscipennis w FusFus A T 589 bp AF071909.1 Drosophila sechellia w HaHa A T 576 bp AF020073.1 Glossina morsitans w MorsMors A NK 564 bp AF020079.1 Cylindrepomus peregrinus w PerMors A T 564 bp AF071914.1 Ephestia kuehniella w KueKue A NK 561 bp AF071911.1 Muscidifurax uniraptor w UniUni A T 644 bp AF020071.1 Apis mellifera capensis w Cap-B1Cap-B1 B T 599 bp AF510085.1 Tribolium confusum w ConCon B Cl 555 bp AF020083 Laodelphax striatellus w StriCon B Cl 555 bp AF020080.1 Apoanagyrus diversicornis w DivDiv B T 543 bp AF071916.1 Trichogramma deion w DeiDei B T 555 bp AF020084.1 Thioalkalimicrobium sibericum w SibSib B T 555 bp AF071923.1 Trichogramma kaykai w KayBKay B T 555 bp AF071924.1 Culex pipiens w PipPip B Cl 603 bp KT964225.1 Diaphorina citri w DiDi B NK 600 bp KF680772.1 Armadillidium vulgare w VulVul B F 596 bp AF071917.1 Tagosodes orizicolus w OriOri B Cl 552 bp AF020085.1 Encarsia formosa w ForFor B T 546 bp AF071918.1 NCBI, National Center for Biotechnology Information;
wsp ,Wolbachia outer surface protein; NK, not known; T, Thelytoky; MK, Male killing; Cl, cytoplasmic incompatibility; F, Feminization..
-
Table 3 . Allelic compositions and accession numbers of
Wolbachia MLST genotyping (ST-483) and identification of hypervariable regions (HVRs) of theWolbachia surface protein (WSP) profile from various developmental stages ofB. longissima ..Strain namea Strain IDb wsp (Accession No.)WSP profilec MLST profile (Accession no.) STd HVR1 HVR2 HVR3 HVR4 wsp gatB coxA hcpA ftsZ fbpA w LogE1842 MG345105 2 142 143 23 720 (158) MG553923 (266) MG553908 (6) MG553928 (234) MG553918 (302) MG553913 483 w LogL1843 MG345106 2 142 143 23 720 (158) MG553924 (266) MG553909 (6) MG553929 (234) MG553919 (302) MG553914 483 w LogP1844 MG345107 2 142 143 23 720 (158) MG553925 (266) MG553910 (6) MG553930 (234) MG553920 (302) MG553915 483 w LogF1845 MG345108 2 142 143 23 720 (158) MG553926 (266) MG553911 (6) MG553931 (234) MG553921 (302) MG553916 483 w LogM1846 MG345109 2 142 143 23 720 (158) MG553927 (266) MG553912 (6) MG553932 (234) MG553922 (302) MG553917 483 a
Wolbachia strain name assigned according to developmental stages ofB. longissima (w LogE for eggs,w LogL for larvae,w LogP for pupae,w LogF for female, andw LogM for male)..b
Wolbachia strain identifier given by the MLST database..cPeptide haplotypes of four consecutive sections of WSP, each section including a hypervariable regions..
dSequencing type (ST) recognized as a unique allelic profile assigned through the MLST database..
References
- Jolivet P, Santiago-Blay JA, Schmitt M (eds). 2008. Research on Chrysomelidae. Jolivet P, Santiago-Blay JA, Schmitt M (eds). Brill Leiden, The Netherlands.
- Wesseler J, Fall EH. 2010. Potential damage costs of
Diabrotica virgifera virgifera infestation in Europe - the 'no control' scenario.J. Appl. Entomol. 134 : 385-394. - Staines C. Catalog of the hispines of the World (Coleoptera: Chrysomelidae: Cassidinae). Tribe Cryptonychini, 2012. Online publication available from http://entomology.si.edu/Collections_Coleoptera-Hispines.html. last accessed January 2014.
- Konishi K, Nakamura S, Takasu K. Invasion of the coconut hispine beetle,
Brontispa longissima : current situation and control measures in Asia. Presented at the NIAES International Symposium 2007, October 22-23, 2007. Epochal Tsukuba, Japan. - Sugeno W, Kawazu K, Takano S, Nakamura S, Mochizuki A. 2011. Suitability of monocots for rearing alien coconut pest
Brontispa longissima (Coleoptera: Chrysomelidae).Ann. Entomol. Soc. Am. 104 : 682-687. - Lu Y, Zeng L, Wang L, Zhou R. 2003. Risk analysis of palm leaf beetle
Brontispa longissima (Gestro).Entomol. J. East Chin. 13 : 17-20. - Zhang X, Tang B, Hou Y. 2015. A rapid diagnostic technique to discriminate between two pests of palms,
Brontispa longissima andOctodonta nipae (Coleoptera: Chrysomelidae), for quarantine applications.J. Econ. Entomol. 108 : 95-99. - Yamashita A, Takasu K. 2010. Suitability of potential host plants in Japan for immature development of the coconut hispine beetle,
Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae).Japan Agric. Res. Q. 44 : 143-149. - Hou Y, Miao Y, Zhang Z. 2014. Study on life parameters of the invasive species
Octodonta nipae (Coleoptera: Chrysomelidae) on different palm species, under laboratory conditions.J. Econ. Entomol. 107 : 1486-1495. - Wu Q, Zeng L, Sun J-C, Liang G, Lu Y. 2006. Control efficiency of
Metarhizium anisopliae onBrontispal longissima (Gestro) in field.J. Shandong Agric. Univ. 37 : 568. - Zhong M, Shen Z-R. 2004. Infection of the endosymbiont
Wolbachia in population ofTrichogramma evanescens in China.Acta Entomol. Sin. 6 : 732-737. - Harris HL, Brennan LJ, Keddie BA, Braig HR. 2010. Bacterial symbionts in insects: balancing life and death.
Symbiosis 51 : 37-53. - Mason CJ, Raffa KF. 2014. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae.
Environ. Entomol. 43 : 595-604. - Dillon R, Dillon V. 2004. The gut bacteria of insects: nonpathogenic interactions.
Annu. Rev. Entomol. 49 : 71-92. - Douglas AE. 2009. The microbial dimension in insect nutritional ecology.
Funct. Ecol. 23 : 38-47. - Moya A, Peretó J, Gil R, Latorre A. 2008. Learning how to live together: genomic insights into prokaryote-animal symbioses.
Nat. Rev. Genet. 9 : 218-229. - Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. 2006. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria.
PLoS Biol. 4 : e337. - Yen JH, Barr AR. 1973. The etiological agent of cytoplasmic incompatibility in
Culex pipiens .J. Invertebr. Pathol. 22 : 242-250. - Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ. 2010. Adaptation via symbiosis: recent spread of a
Drosophila defensive symbiont.Science 329 : 212-215. - Lu F, Kang X, Lorenz G, Espino L, Jiang M, Way MO. 2014. Culture-independent analysis of bacterial communities in the gut of rice water weevil (Coleoptera: Curculionidae).
Ann. Entomol. Soc. Am. 107 : 592-600. - Pernice M, Simpson SJ, Ponton F. 2014. Towards an integrated understanding of gut microbiota using insects as model systems.
J. Insect Physiol. 69 : 12-18. - Mouton L, Henri H, Bouletreau M, Vavre F. 2003. Strainspecific regulation of intracellular
Wolbachia density in multiply infected insects.Mol. Ecol. 12 : 3459-3465. - Koga R, Tsuchida T, Fukatsu T. 2003. Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont
Buchnera in an aphid.Proc. R. Soc. Lond. B 270 : 2543-2550. - Hoffmann A, Turelli M. 1997. Cytoplasmic incompatibility in insects, pp. 42-80.
In: O'Neill SL, Werren JH, Hoffmann AA (eds),Influential Passengers . Oxford University Press, New York. - Bouchon D, Rigaud T, Juchault P. 1998. Evidence for widespread
Wolbachia infection in isopod crustaceans: molecular identification and host feminization.Proc. R. Soc. Lond. B 265 : 1081-1090. - Fialho RF, Stevens L. 2000. Male-killing
Wolbachia in a flour beetle.Proc. R. Soc. Lond. B 267 : 1469-1473. - Pannebakker BA, Pijnacker LP, Zwaan BJ, Beukeboom LW. 2004. Cytology of
Wolbachia -induced parthenogenesis inLeptopilina clavipes (Hymenoptera: Figitidae).Genome 47 : 299-303. - Werren JH. 1997. Biology of
Wolbachia .Annu. Rev. Entomol. 42 : 587-609. - Jiggins FM, Bentley JK, Majerus ME, Hurst GD. 2001. How many species are infected with
Wolbachia ? Cryptic sex ratio distorters revealed to be common by intensive sampling.Proc. R. Soc. Lond. B 268 : 1123-1126. - Jeyaprakash A, Hoy M. 2000. Long PCR improves
Wolbachia DNA amplification:wsp sequences found in 76% of sixtythree arthropod species.Insect Mol. Biol. 9 : 393-405. - Werren JH, Windsor DM. 2000.
Wolbachia infection frequencies in insects: evidence of a global equilibrium?Proc. R. Soc. Lond. B 267 : 1277-1285. - Werren JH, Windsor D, Guo L. 1995. Distribution of
Wolbachia among neotropical arthropods.Proc. R. Soc. Lond. B 262 : 197-204. - Oh HW, Kim MG, Shin SW, Bae KS, Ahn YJ, Park HY. 2000. Ultrastructural and molecular identification of a
Wolbachia endosymbiont in a spider,Nephila clavata .Insect Mol. Biol. 9 : 539-543. - Tsuchida T, Koga R, Fukatsu T. 2004. Host plant specialization governed by facultative symbiont.
Science 303 : 1989. - Bordenstein SR, Paraskevopoulos C, Hotopp JCD, Sapountzis P, Lo N, Bandi C,
et al . 2009. Parasitism and mutualism inWolbachia : what the phylogenomic trees can and cannot say.Mol. Biol. Evol. 26 : 231-241. - Salunke BK, Salunkhe RC, Patole MS, Shouche YS. 2010.
Wolbachia and termite association: present status and future implications.J. Biosci. 35 : 171-175. - Ali H, Hou Y, Tang B, Shi ZH, Huang B, Muhammad A,
et al . 2016. A way of reproductive manipulation and biology ofWolbachia pipientis .J. Exp. Biol. Agric. Sci. 4 : 156-168. - Werren JH, Zhang W, Guo LR. 1995. Evolution and phylogeny of
Wolbachia : reproductive parasites of arthropods.Proc. R. Soc. Lond. B 261 : 55-63. - Vandekerckhove TT, Watteyne S, Willems A, Swings JG, Mertens J, Gillis M. 1999. Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium
Wolbachia from the novel hostFolsomia candida (Hexapoda, Collembola) and its implications for wolbachial taxonomy.FEMS Microbiol. Lett. 180 : 279-286. - Rowley SM, Raven RJ, McGraw EA. 2004.
Wolbachia pipientis in Australian spiders.Curr. Microbiol. 49 : 208-214. - Casiraghi M, Bordenstein S, Baldo L, Lo N, Beninati T, Wernegreen J,
et al . 2005. Phylogeny ofWolbachia pipientis based ongltA ,groEL andftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in theWolbachia tree.Microbiology 151 : 4015-4022. - Lo N, Paraskevopoulos C, Bourtzis K, O'Neill S, Werren J, Bordenstein S,
et al . 2007. Taxonomic status of the intracellular bacteriumWolbachia pipientis .Int. J. Syst. Evol. Microbiol. 57 : 654-657. - Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR,
et al . 2006. Multilocus sequence typing system for the endosymbiontWolbachia pipientis .Appl. Environ. Microbiol. 72 : 7098-7110. - Zhou W, Rousset F, O'Neill S. 1998. Phylogeny and PCRbased classification of
Wolbachia strains usingwsp gene sequences.Proc. R. Soc. Lond. B 265 : 509-515. - Kaakeh W. 2005. Longevity, fecundity, and fertility of the red palm weevil,
Rynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) on natural and artificial diets.Emirates J. Agric. Sci. 17 : 23-33. - Avtzis DN, Doudoumis V, Bourtzis K. 2014.
Wolbachia infections and mitochondrial diversity of two chestnut feeding Cydia species.PLoS One 9 : e112795. - Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Mol. Biol. Evol. 28 : 2731-2739. - Hoffmann M, Coy M, Pelz-Stelinski K. 2014.
Wolbachia infection density in populations of the Asian citrus psyllid (Hemiptera: Liviidae).Environ. Entomol. 43 : 1215-1222. - Kyei-Poku G, Colwell D, Coghlin P, Benkel B, Floate K. 2005. On the ubiquity and phylogeny of
Wolbachia in lice.Mol. Ecol. 14 : 285-294. - Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. 2002. How many
Wolbachia supergroups exist?Mol. Biol. Evol. 19 : 341-346. - Hamm CA, Begun DJ, Vo A, Smith CC, Saelao P, Shaver AO,
et al . 2014.Wolbachia do not live by reproductive manipulation alone: infection polymorphism inDrosophila suzukii andD. subpulchrella .Mol. Ecol. 23 : 4871-4885. - Liu Y, Zhang Y, Jiang Q, Rao M, Sheng Z, Zhang Y,
et al . 2015. Identification of valid housekeeping genes for realtime quantitative PCR analysis of collapsed lung tissues of neonatal somatic cell nuclear transfer-derived cattle.Cell. Reprogram. 17 : 360-367. - Sun W, Jin Y, He L, Lu W-C, Li M. 2010. Suitable reference gene selection for different strains and developmental stages of the carmine spider mite,
Tetranychus cinnabarinus , using quantitative real-time PCR.J. Insect Sci. 10 : 208. - Song H, Zhang X, Shi C, Wang S, Wu A, Wei C. 2016. Selection and verification of candidate reference genes for mature microRNA expression by quantitative RT-PCR in the tea plant (
Camellia sinensis ).Genes 7 : 25. - Bustin SA. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.
J. Mol. Endocrinol. 25 : 169-193. - Ming Q-L, Shen J-F, Cheng C, Liu C-M, Feng Z-J. 2015.
Wolbachia infection dynamics inTribolium confusum (Coleoptera: Tenebrionidae) and their effects on host mating behavior and reproduction.J. Econ. Entomol. 108 : 1408-1415. - Dossi FCA, da Silva EP, Cônsoli FL. 2014. Population dynamics and growth rates of endosymbionts during
Diaphorina citri (Hemiptera, Liviidae) ontogeny.Microb. Ecol. 68 : 881-889. - Rousset F, Braig HR, O'Neill SL. 1999. A stable triple
Wolbachia infection inDrosophila with nearly additive incompatibility effects.Heredity 82 : 620-627. - Noda H, Koizumi Y, Zhang Q, Deng K. 2001. Infection density of
Wolbachia and incompatibility level in two planthopper species,Laodelphax striatellus andSogatella furcifera .Insect Biochem. Mol. Biol. 31 : 727-737. - Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F,
et al . 1999.Wolbachia infections are distributed throughout insect somatic and germ line tissues.Insect Biochem. Mol. Biol. 29 : 153-160. - Kose H, Karr TL. 1995. Organization of
Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody.Mech. Dev. 51 : 275-288. - Serbus LR, Sullivan W. 2007. A cellular basis for
Wolbachia recruitment to the host germline.PLoS Pathog. 3 : e190. - Kondo N, Shimada M, Fukatsu T. 1999. High prevalence of
Wolbachia in the azuki bean beetleCallosobruchus chinensis (Coleoptera, Bruchidae).Zool. Sci. 16 : 955-962. - Cheng Q, Ruel T, Zhou W, Moloo S, Majiwa P, O'Neill S,
et al . 2000. Tissue distribution and prevalence ofWolbachia infections in tsetse flies, Glossina spp.Med. Vet. Entomol. 14 : 44-50. - Rożek M, Lachowska D, Holecovà M, Kajtoch Ł. 2009. Karyology of parthenogenetic weevils (Coleoptera, Curculionidae): do meiotic prophase stages occur?
Micron 40 : 881-885. - Toju H, Fukatsu T. 2011. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants.
Mol. Ecol. 20 : 853-868. - Rasgon JL, Scott TW. 2004. Phylogenetic characterization of
Wolbachia symbionts infectingCimex lectularius L. andOeciacus vicarius Horvath (Hemiptera: Cimicidae).J. Med. Entomol. 41 : 1175-1178. - Lachowska D, Kajtoch Ł, Knutelski S. 2010. Occurrence of
Wolbachia in central European weevils: correlations with host systematics, ecology, and biology.Entomol. Exp. Appl. 135 : 105-118. - Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. 2004.
Wolbachia -induced cytoplasmic incompatibility as a means for insect pest population control.Proc. Natl. Acad. Sci. USA 101 : 15042-15045. - Bourtzis K. 2008.
Wolbachia -based technologies for insect pest population control.Adv. Exp. Med. Biol. 627 : 104-113. - Calvitti M, Moretti R, Lampazzi E, Bellini R, Dobson SL. 2010. Characterization of a new
Aedes albopictus (Diptera: Culicidae)-Wolbachia pipientis (Rickettsiales: Rickettsiaceae) symbiotic association generated by artificial transfer of the wPip strain fromCulex pipiens (Diptera: Culicidae).J. Med. Entomol. 47 : 179-187. - Walker T, Johnson P, Moreira L, Iturbe-Ormaetxe I, Frentiu F, McMeniman C,
et al . 2011. The wMelWolbachia strain blocks dengue and invades cagedAedes aegypti populations.Nature 476 : 450-453. - Hoffmann AA, Ross PA, Rašić G. 2015.
Wolbachia strains for disease control: ecological and evolutionary considerations.Evol. Appl. 8 : 751-768. - Merçot H, Charlat S. 2004.
Wolbachia infections inDrosophila melanogaster andD. simulans : polymorphism and levels of cytoplasmic incompatibility.Genetica 120 : 51-59. - Cross HF, Haarbrink M, Egerton G, Yazdanbakhsh M, Taylor MJ. 2001. Severe reactions to filarial chemotherapy and release of
Wolbachia endosymbionts into blood.Lancet 358 : 1873-1875. - Saint André Av, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L,
et al . 2002. The role of endosymbioticWolbachia bacteria in the pathogenesis of river blindness.Science 295 : 1892-1895.