Articles Service
Note
Genomic Insights of Weissella jogaejeotgali FOL01T Reveals Its Food Fermentation Ability and Human Gut Adaptive Potential for Probiotic Applications in Food Industries
Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
J. Microbiol. Biotechnol. 2017; 27(5): 943-946
Published May 28, 2017 https://doi.org/10.4014/jmb.1702.02054
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
References
- Alegría Á, Delgado S, Flórez AB, Mayo B. 2013. Identification, typing, and functional characterization of Leuconostoc spp. strains from traditional, starter-free cheeses. Dairy Sci. Technol. 93: 657-673.
- Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME. 1991. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491-7500.
- Allameh SK, Daud H, Yusoff FM, Saad CR, Ideris A. 2012. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr. J. Biotechnol. 11: 3810-3816.
- Cho J, Lee D, Yang C, Jeon J, Kim J, Han H. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267.
- Jeong SH, Lee HJ, Jung JY, Lee SH, Seo H-Y, Park W-S, Jeon CO. 2013. Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 160: 252-259.
- Fusc o V, Quero GM, Cho GS, Kabisc h J, Meske D, Neve H, et al. 2015. The genus Weissella: taxonomy, ecology and biotechnological potential. Front. Microbiol. 6: 155.
- Collins MD, Samelis J, Metaxopoulos J, Wallbanks S. 1993. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595-603.
- Srionnual S, Yanagida F, Lin LH, Hsiao KN, Chen YS. 2007. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand. Appl. Environ. Microbiol. 73: 2247-2250.
- Masuda Y, Zendo T, Sawa N, Perez RH, Nakayama J, Sonomoto K. 2012. Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. J. Appl. Microbiol. 112: 99-108.
- Leong KH, Chen YS, Lin YH, Pan SF, Yu B, Wu HC, Yanagida F. 2013. Weissellicin L, a novel bacteriocin from sian-sianzih-isolated Weissella hellenica 4-7. J. Appl. Microbiol. 115: 70-76.
- Nam H, Ha M, Bae O, Lee Y. 2002. Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori. Appl. Environ. Microbiol. 68: 4642-4645.
- Lee S-H, Ku H-J, Ahn M-J, Hong J-S, Lee SH, Shin H, et al. 2015. Isolation of Weissella jogaejeotgali sp. nov. from jogaejeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 65: 4674-4681.
- Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569.
- Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29: 2607-2618.
- Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 23: 673-679.
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
- Zdobnov EM, Apweiler R. 2001. InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847-848.
- Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30.
- Azcarate-Peril MA, Tallon R, Klaenhammer TR. 2009. Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J. Dairy Sci. 92: 870-886.
- Divya JB, Varsha KK, Nampoothiri KM. 2012. Newly isolated lactic acid bacteria with probiotic features for potential application in food industry. Appl. Biochem. Biotechnol. 167: 1314-1324.
- Mager WH, de Boer AH, Siderius MH, Voss HP. 2000. Cellular responses to oxidative and osmotic stress. Cell Stress Chaperones 5: 73-75.
- Lee S-H, Ahn M-J, Hong J-S, Lee J-H. 2015. Diversity and community analysis of fermenting bacteria isolated from eight major Korean fermented foods using arbitrary-primed PCR and 16S rRNA gene sequencing. J. Korean Soc. Appl. Biol. Chem. 58: 453-461.
- Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429-453.
- Wang L, Si W, Xue H, Zhao X. 2017. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands. Cell. Microbiol. 19: e12731
- Cosentino S, Voldby Larsen M, Moller Aarestrup F, Lund O. 2013. PathogenFinder - distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 8: e77302.
Related articles in JMB
Article
Note
J. Microbiol. Biotechnol. 2017; 27(5): 943-946
Published online May 28, 2017 https://doi.org/10.4014/jmb.1702.02054
Copyright © The Korean Society for Microbiology and Biotechnology.
Genomic Insights of Weissella jogaejeotgali FOL01T Reveals Its Food Fermentation Ability and Human Gut Adaptive Potential for Probiotic Applications in Food Industries
Hye-Jin Ku 1, You-Tae Kim 1 and Ju-Hoon Lee 1*
Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
Abstract
Although the genus Leuconostoc, generally found in various fermented foods, has often been
suggested to be a novel probiotic for food fermentation and health promotion, the strains in
this genus showed low acid tolerance and low osmotic stress resistance activities, which are
required for survival during food fermentation events. Recently, a novel species of Weissella,
W. jogaejeotgali FOL01T (= KCCM 43128 = JCM 30580), was isolated from Korean fermented
clams. To determine the genomic features of this new species, its genome was completely
sequenced and analyzed. The genome consists of a circular chromosome of 2,114,163 bp of
DNA with a G+C content of 38.8%, and the plasmid pFOL01 consists of 35,382 bp of DNA with
a G+C content of 39.1%. The genome analysis showed its potential for use in food fermentation
and osmotic stress resistance abilities for processing in food industries. In addition, this strain
was predicted to have acid tolerance and adhesion to the mucosal layer for survival and
colonization in the gut. Subsequent experiments substantiated these abilities, suggesting that
W. jogaejeotgali may have probiotic potential and a high survival rate during food
fermentation. Therefore, it may be suitable as a novel probiotic strain for various applications
in food industries.
Keywords: Weissella jogaejeotgali, lactic acid bacteria, probiotics, high-salt fermented food
References
- Alegría Á, Delgado S, Flórez AB, Mayo B. 2013. Identification, typing, and functional characterization of Leuconostoc spp. strains from traditional, starter-free cheeses. Dairy Sci. Technol. 93: 657-673.
- Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME. 1991. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491-7500.
- Allameh SK, Daud H, Yusoff FM, Saad CR, Ideris A. 2012. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr. J. Biotechnol. 11: 3810-3816.
- Cho J, Lee D, Yang C, Jeon J, Kim J, Han H. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267.
- Jeong SH, Lee HJ, Jung JY, Lee SH, Seo H-Y, Park W-S, Jeon CO. 2013. Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 160: 252-259.
- Fusc o V, Quero GM, Cho GS, Kabisc h J, Meske D, Neve H, et al. 2015. The genus Weissella: taxonomy, ecology and biotechnological potential. Front. Microbiol. 6: 155.
- Collins MD, Samelis J, Metaxopoulos J, Wallbanks S. 1993. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595-603.
- Srionnual S, Yanagida F, Lin LH, Hsiao KN, Chen YS. 2007. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand. Appl. Environ. Microbiol. 73: 2247-2250.
- Masuda Y, Zendo T, Sawa N, Perez RH, Nakayama J, Sonomoto K. 2012. Characterization and identification of weissellicin Y and weissellicin M, novel bacteriocins produced by Weissella hellenica QU 13. J. Appl. Microbiol. 112: 99-108.
- Leong KH, Chen YS, Lin YH, Pan SF, Yu B, Wu HC, Yanagida F. 2013. Weissellicin L, a novel bacteriocin from sian-sianzih-isolated Weissella hellenica 4-7. J. Appl. Microbiol. 115: 70-76.
- Nam H, Ha M, Bae O, Lee Y. 2002. Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori. Appl. Environ. Microbiol. 68: 4642-4645.
- Lee S-H, Ku H-J, Ahn M-J, Hong J-S, Lee SH, Shin H, et al. 2015. Isolation of Weissella jogaejeotgali sp. nov. from jogaejeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 65: 4674-4681.
- Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569.
- Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29: 2607-2618.
- Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 23: 673-679.
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
- Zdobnov EM, Apweiler R. 2001. InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847-848.
- Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30.
- Azcarate-Peril MA, Tallon R, Klaenhammer TR. 2009. Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J. Dairy Sci. 92: 870-886.
- Divya JB, Varsha KK, Nampoothiri KM. 2012. Newly isolated lactic acid bacteria with probiotic features for potential application in food industry. Appl. Biochem. Biotechnol. 167: 1314-1324.
- Mager WH, de Boer AH, Siderius MH, Voss HP. 2000. Cellular responses to oxidative and osmotic stress. Cell Stress Chaperones 5: 73-75.
- Lee S-H, Ahn M-J, Hong J-S, Lee J-H. 2015. Diversity and community analysis of fermenting bacteria isolated from eight major Korean fermented foods using arbitrary-primed PCR and 16S rRNA gene sequencing. J. Korean Soc. Appl. Biol. Chem. 58: 453-461.
- Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429-453.
- Wang L, Si W, Xue H, Zhao X. 2017. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands. Cell. Microbiol. 19: e12731
- Cosentino S, Voldby Larsen M, Moller Aarestrup F, Lund O. 2013. PathogenFinder - distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 8: e77302.