전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. Wang HH, Zhou XR, Liu Q, Chen GQ. 2011. Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl. Microbiol. Biotechnol. 89: 1497-1507.
    Pubmed CrossRef
  2. Gumel AM, Annuar MS, Heidelberg T. 2012. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent. PLoS One 7: e45214.
    Pubmed PMC CrossRef
  3. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V. 2014. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8: 791-808.
    CrossRef
  4. Chen Y J, H uang Y C, L ee C Y. 2 014. P rod uction a nd characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J. Biosci. Bioeng. 118: 145-152.
    Pubmed CrossRef
  5. Choi D, Chipman DC, Bents SC, Brown RC. 2010. A technoeconomic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 160: 1032-1046.
    Pubmed CrossRef
  6. Koller M, Marsalek L, de Sousa Dias MM, Braunegg G. 2016. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N. Biotechnol. 37: 24-38.
    Pubmed CrossRef
  7. Lee SH, Kim JH, Mishra D, Ni YY, Rhee YH. 2011. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 102: 6159-6166.
    Pubmed CrossRef
  8. Song JH, Jeon CO, Choi MH, Yoon SC, Park W. 2008. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J. Microbiol. Biotechnol. 18:1408-1415.
    Pubmed
  9. Singh AK, Mallick N. 2009. Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA copolymer by Pseudomonas aeruginosa MTCC 7925. J. Ind. Microbiol. Biotechnol. 36: 347-354.
    Pubmed CrossRef
  10. Ji CM, Eong PP, Ti TB, Seng CE, Ling CK. 2013. Biogas from palm oil mill effluent (POME): opportunities and challenges from Malaysia’s perspective. Renew. Sustain. Energy Rev. 26:717-726.
    CrossRef
  11. Abdullah N, Sulaiman F. 2013. The oil palm wastes in Malaysia, pp. 75-100. In Matovic MD (ed.). Biomass Now Sustainable Growth and Use. InTech, Croatia, EU.
  12. Kellerhals MB, Kessler B, Tchouboukov A, Brandl H, Witholt B. 2000. Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33: 4690-4698.
    CrossRef
  13. Wan Nawawi WM, Jamal P, Alam MZ. 2010. Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour. Technol. 101: 9241-9247.
    Pubmed CrossRef
  14. Chen GQ, Hajnal I, Wu H, Lv L, Ye J. 2015. Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol. 33: 565-574.
    Pubmed CrossRef
  15. Liu Q, Luo G, Zhou XR, Chen GQ. 2011. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 13: 11-17.
    Pubmed CrossRef
  16. Hayyan A, Alam MZ, Mirghani ME, Kabbashi NA, Hakimi NI, Siran YM, et al. 2010. Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresour. Technol. 101: 7804-7811.
    Pubmed CrossRef
  17. Kim DY, Kim YB, Rhee YH. 2000. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28: 23-29.
    CrossRef
  18. Alias Z, Tan IK. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresour. Technol. 96: 1229-1234.
    Pubmed CrossRef
  19. Ciesielski S, Przybylek G. 2014. Volatile fatty acids influence on the structure of microbial communities producing PHAs. Braz. J. Microbiol. 45: 395-402.
    Pubmed PMC CrossRef
  20. Park SJ, Lee SY. 2004. New FadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates in FadB mutant Escherichia coli. Biotechnol. Bioeng. 86: 681-686.
    Pubmed CrossRef
  21. Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ. 2014. Engineering the diversity of polyesters. Curr. Opin. Biotechnol. 29: 24-33.
    Pubmed CrossRef
  22. Du C, Sabirova J, Soetaert W, Lin SKC. 2012. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 6: 14-25.
    CrossRef
  23. Mittendorf V, Robertson EJ, Leech RM, Kruger N, Steinbuchel A, Poirier Y. 1998. Synthesis of medium-chainlength polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid beta-oxidation. Proc. Natl. Acad. Sci. USA 95: 13397-13402.
    Pubmed PMC CrossRef
  24. Ward PG, O’Connor KE. 2005. Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int. J. Biol. Macromol. 35: 127-133.
    Pubmed CrossRef
  25. Borrero-de Acuna JM, Bielecka A, Haussler S, Schobert M, Jahn M, Wittmann C, et al. 2014. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb. Cell Fact. 13: 88.
    Pubmed PMC CrossRef
  26. Hassan MA, Yee L, Yee P, Ariffin H, Raha AR, Shirai Y, et al. 2013. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenergy 50: 1-9.
    CrossRef
  27. Gamal RF, Abdelhady HM, Khodair TA, El-Tayeb TS, Hassan EA, Aboutaleb KA. 2013. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Braz. J. Microbiol. 44: 539-549.
    Pubmed PMC CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2017; 27(5): 990-994

Published online May 28, 2017 https://doi.org/10.4014/jmb.1612.12031

Copyright © The Korean Society for Microbiology and Biotechnology.

Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12

Du-Kyeong Kang 1, 2, Cho-Ryong Lee 1, 2, Sun Hee Lee 3, Jung-Hoon Bae 1, Young-Kwon Park 4, Young Ha Rhee 3, Bong Hyun Sung 1, 2* and Jung-Hoon Sohn 1, 2

1Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea, 2Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea, 3Department of Microbiology and Molecular Biology, Chungnam National Univercity, Daejeon 34134, Republic of Korea, 4School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea

Received: December 20, 2016; Accepted: March 9, 2017

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use
in diverse applications is prohibited by high production costs. To reduce these costs, the
conversion by Pseudomonas strains of P HAs from crude s ludge p alm o il ( SPO) a s an
inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce
the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The
MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel
permeation chromatography, and differential scanning calorimetry. These findings may
contribute to more widespread use of PHAs by reducing PHA production costs.

Keywords: Sludge palm oil, waste utilization, PHA, Pseudomonas, bioplastic

References

  1. Wang HH, Zhou XR, Liu Q, Chen GQ. 2011. Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl. Microbiol. Biotechnol. 89: 1497-1507.
    Pubmed CrossRef
  2. Gumel AM, Annuar MS, Heidelberg T. 2012. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent. PLoS One 7: e45214.
    Pubmed KoreaMed CrossRef
  3. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V. 2014. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8: 791-808.
    CrossRef
  4. Chen Y J, H uang Y C, L ee C Y. 2 014. P rod uction a nd characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J. Biosci. Bioeng. 118: 145-152.
    Pubmed CrossRef
  5. Choi D, Chipman DC, Bents SC, Brown RC. 2010. A technoeconomic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 160: 1032-1046.
    Pubmed CrossRef
  6. Koller M, Marsalek L, de Sousa Dias MM, Braunegg G. 2016. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N. Biotechnol. 37: 24-38.
    Pubmed CrossRef
  7. Lee SH, Kim JH, Mishra D, Ni YY, Rhee YH. 2011. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 102: 6159-6166.
    Pubmed CrossRef
  8. Song JH, Jeon CO, Choi MH, Yoon SC, Park W. 2008. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J. Microbiol. Biotechnol. 18:1408-1415.
    Pubmed
  9. Singh AK, Mallick N. 2009. Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA copolymer by Pseudomonas aeruginosa MTCC 7925. J. Ind. Microbiol. Biotechnol. 36: 347-354.
    Pubmed CrossRef
  10. Ji CM, Eong PP, Ti TB, Seng CE, Ling CK. 2013. Biogas from palm oil mill effluent (POME): opportunities and challenges from Malaysia’s perspective. Renew. Sustain. Energy Rev. 26:717-726.
    CrossRef
  11. Abdullah N, Sulaiman F. 2013. The oil palm wastes in Malaysia, pp. 75-100. In Matovic MD (ed.). Biomass Now Sustainable Growth and Use. InTech, Croatia, EU.
  12. Kellerhals MB, Kessler B, Tchouboukov A, Brandl H, Witholt B. 2000. Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33: 4690-4698.
    CrossRef
  13. Wan Nawawi WM, Jamal P, Alam MZ. 2010. Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour. Technol. 101: 9241-9247.
    Pubmed CrossRef
  14. Chen GQ, Hajnal I, Wu H, Lv L, Ye J. 2015. Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol. 33: 565-574.
    Pubmed CrossRef
  15. Liu Q, Luo G, Zhou XR, Chen GQ. 2011. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 13: 11-17.
    Pubmed CrossRef
  16. Hayyan A, Alam MZ, Mirghani ME, Kabbashi NA, Hakimi NI, Siran YM, et al. 2010. Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresour. Technol. 101: 7804-7811.
    Pubmed CrossRef
  17. Kim DY, Kim YB, Rhee YH. 2000. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28: 23-29.
    CrossRef
  18. Alias Z, Tan IK. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresour. Technol. 96: 1229-1234.
    Pubmed CrossRef
  19. Ciesielski S, Przybylek G. 2014. Volatile fatty acids influence on the structure of microbial communities producing PHAs. Braz. J. Microbiol. 45: 395-402.
    Pubmed KoreaMed CrossRef
  20. Park SJ, Lee SY. 2004. New FadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates in FadB mutant Escherichia coli. Biotechnol. Bioeng. 86: 681-686.
    Pubmed CrossRef
  21. Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ. 2014. Engineering the diversity of polyesters. Curr. Opin. Biotechnol. 29: 24-33.
    Pubmed CrossRef
  22. Du C, Sabirova J, Soetaert W, Lin SKC. 2012. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 6: 14-25.
    CrossRef
  23. Mittendorf V, Robertson EJ, Leech RM, Kruger N, Steinbuchel A, Poirier Y. 1998. Synthesis of medium-chainlength polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid beta-oxidation. Proc. Natl. Acad. Sci. USA 95: 13397-13402.
    Pubmed KoreaMed CrossRef
  24. Ward PG, O’Connor KE. 2005. Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int. J. Biol. Macromol. 35: 127-133.
    Pubmed CrossRef
  25. Borrero-de Acuna JM, Bielecka A, Haussler S, Schobert M, Jahn M, Wittmann C, et al. 2014. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb. Cell Fact. 13: 88.
    Pubmed KoreaMed CrossRef
  26. Hassan MA, Yee L, Yee P, Ariffin H, Raha AR, Shirai Y, et al. 2013. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenergy 50: 1-9.
    CrossRef
  27. Gamal RF, Abdelhady HM, Khodair TA, El-Tayeb TS, Hassan EA, Aboutaleb KA. 2013. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Braz. J. Microbiol. 44: 539-549.
    Pubmed KoreaMed CrossRef