전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study. Lancet Infect. Dis. 16: 161-168.
    CrossRef
  2. Chu HY, Englund JA, Strelitz B, Lacombe K, Jones C, Follmer K, et al. 2016. Rhinovirus disease in children seeking care in a tertiary pediatric emergency department. J. Pediatr. Infect. Dis. Soc. 5: 29-38.
    Pubmed PMC CrossRef
  3. Suzuki S, Ohnishi M, Kawanishi M, Akiba M, Kuroda M. 2016. Investigation of a plasmid genome database for colistin-resistance gene mcr-1. Lancet Infect. Dis. 16: 284-285.
    CrossRef
  4. Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Hoang HT, Pham NT, et al. 2016. Colistin-resistant Escherichia coli harbouring mcr-1 isolated from food animals in Hanoi, Vietnam. Lancet Infect. Dis. 16: 286-287.
    CrossRef
  5. Stoesser N, Mathers AJ, Moore CE, Day NP, Crook DW. 2016. Colistin resistance gene mcr-1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infect. Dis. 16: 285-286.
    CrossRef
  6. CDC. 2016. Discovery of first mcr-1 gene in E. coli bacteria found in a human in United States. Available from www.cdc.gov/media/releases/2016/s0531-mcr-1.html. Accessed May 31, 2016.
  7. Olaitan AO, Chabou S, Okdah L, Morand S, Rolain JM. 2016. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 16: 147.
    CrossRef
  8. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agerso Y, et al. 2015. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill. 20: Article 1.
    Pubmed CrossRef
  9. Cannatelli A, D’Andrea MM, Giani T, Di Pilato V, Arena F, Ambretti S, et al. 2013. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob. Agents Chemother. 57: 5521-5526.
    Pubmed PMC CrossRef
  10. Tse H, Yuen KY. 2016. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 16: 145-146.
    CrossRef
  11. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31: 833-838.
    Pubmed PMC CrossRef
  12. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. 2011. CRISPR RNA maturation by transencoded small RNA and host factor RNase III. Nature 471:602-607.
    Pubmed PMC CrossRef
  13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
    Pubmed CrossRef
  14. Morrill HJ, Morton JB, Caffrey AR, Jiang L, Dosa D, Mermel LA, et al. 2017. Antimicrobial resistance of Escherichia coli urinary isolates in the Veterans Affairs Healthcare System. Antimicrob. Agents Chemother. 61: e02236-16.
    Pubmed CrossRef
  15. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523: 481-485.
    Pubmed PMC CrossRef
  16. Lee EK, Kim YC, Nan YH, Shin SY. 2011. Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs. Peptides 32: 1123-1130.
    Pubmed CrossRef
  17. LaFountaine JS, Fathe K, Smyth HD. 2015. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 494: 180-194.
    Pubmed CrossRef
  18. Citorik RJ, Mimee M, Lu TK. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32: 1141-1145.
    Pubmed PMC CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2017; 27(7): 1276-1280

Published online July 28, 2017 https://doi.org/10.4014/jmb.1611.11021

Copyright © The Korean Society for Microbiology and Biotechnology.

Generation of Newly Discovered Resistance Gene mcr-1 Knockout in Escherichia coli Using the CRISPR/Cas9 System

Lichang Sun 1, Tao He 1, Lili Zhang 1, Maoda Pang 1, Qiaoyan Zhang 2, Yan Zhou 1, Hongduo Bao 1 and RAN WANG 1*

1Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China, 2Zhejiang Province Key Laboratory for Food Safety, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, P.R. China

Received: November 7, 2016; Accepted: May 21, 2017

Abstract

The mcr-1 gene is a new “superbug” gene discoverd in China in 2016 that makes bacteria
highly resistant to the last-resort class of antibiotics. The mcr-1 gene raised serious concern
about its possible global dissemination and spread. Here, we report a potential anti-resistant
strategy using the CRISPR/Cas9-mediated approach that can efficiently induce mcr-1 gene
knockout in Escherichia coli. Our findings suggested that using the CRISPR/Cas9 system to
knock out the resistance gene mcr-1 might be a potential anti-resistant strategy. Bovine
myeloid antimicrobial peptide-27 could help deliver plasmid pCas::mcr targeting specific
DNA sequences of the mcr-1 gene into microbial populations.

Keywords: mcr-1, knockout, E. coli, CRISPR/Cas9 system, BMAP-27

References

  1. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study. Lancet Infect. Dis. 16: 161-168.
    CrossRef
  2. Chu HY, Englund JA, Strelitz B, Lacombe K, Jones C, Follmer K, et al. 2016. Rhinovirus disease in children seeking care in a tertiary pediatric emergency department. J. Pediatr. Infect. Dis. Soc. 5: 29-38.
    Pubmed KoreaMed CrossRef
  3. Suzuki S, Ohnishi M, Kawanishi M, Akiba M, Kuroda M. 2016. Investigation of a plasmid genome database for colistin-resistance gene mcr-1. Lancet Infect. Dis. 16: 284-285.
    CrossRef
  4. Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Hoang HT, Pham NT, et al. 2016. Colistin-resistant Escherichia coli harbouring mcr-1 isolated from food animals in Hanoi, Vietnam. Lancet Infect. Dis. 16: 286-287.
    CrossRef
  5. Stoesser N, Mathers AJ, Moore CE, Day NP, Crook DW. 2016. Colistin resistance gene mcr-1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infect. Dis. 16: 285-286.
    CrossRef
  6. CDC. 2016. Discovery of first mcr-1 gene in E. coli bacteria found in a human in United States. Available from www.cdc.gov/media/releases/2016/s0531-mcr-1.html. Accessed May 31, 2016.
  7. Olaitan AO, Chabou S, Okdah L, Morand S, Rolain JM. 2016. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 16: 147.
    CrossRef
  8. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agerso Y, et al. 2015. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill. 20: Article 1.
    Pubmed CrossRef
  9. Cannatelli A, D’Andrea MM, Giani T, Di Pilato V, Arena F, Ambretti S, et al. 2013. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob. Agents Chemother. 57: 5521-5526.
    Pubmed KoreaMed CrossRef
  10. Tse H, Yuen KY. 2016. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 16: 145-146.
    CrossRef
  11. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31: 833-838.
    Pubmed KoreaMed CrossRef
  12. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. 2011. CRISPR RNA maturation by transencoded small RNA and host factor RNase III. Nature 471:602-607.
    Pubmed KoreaMed CrossRef
  13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
    Pubmed CrossRef
  14. Morrill HJ, Morton JB, Caffrey AR, Jiang L, Dosa D, Mermel LA, et al. 2017. Antimicrobial resistance of Escherichia coli urinary isolates in the Veterans Affairs Healthcare System. Antimicrob. Agents Chemother. 61: e02236-16.
    Pubmed CrossRef
  15. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523: 481-485.
    Pubmed KoreaMed CrossRef
  16. Lee EK, Kim YC, Nan YH, Shin SY. 2011. Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs. Peptides 32: 1123-1130.
    Pubmed CrossRef
  17. LaFountaine JS, Fathe K, Smyth HD. 2015. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 494: 180-194.
    Pubmed CrossRef
  18. Citorik RJ, Mimee M, Lu TK. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32: 1141-1145.
    Pubmed KoreaMed CrossRef