전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Ding Z, Zhao Y, Gao X. 1997. Medicinal insects in China. Ecol. Food Nutr. 36: 209-220.
    CrossRef
  2. Namba T, Ma YH, Inagaki K. 1988. Insect-derived crude drugs in Chinese Song Dynasty. J. Ethnopharmacol. 24: 247-285.
    CrossRef
  3. Pemberton RW. 1999. Insects and other arthropods used as drugs in Korean traditional medicine. J. Ethnopharmacol. 65: 207-216.
    CrossRef
  4. Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon 55: 274-279.
    Pubmed CrossRef
  5. Wenhua R, Shuangquan Z, Daxiang S, Kaiya Z, Guang Y. 2006. Induction, purification and characterization of an antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes mutilans. Indian J. Biochem. Biophys. 43: 88-93.
    Pubmed
  6. Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, et al. 2015. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J. Proteomics 114: 28-37.
    Pubmed CrossRef
  7. Yoo WG, Lee JH, Shin Y, Shim JY, Jung M, Kang BC, et al. 2014. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct. Integr. Genomics 14: 275-283.
    Pubmed CrossRef
  8. Lee JH, Kim IW, Kim MA, Yun EY, Nam SH, Ahn MY, et al. 2015. Scolopendrasin I: a novel antimicrobial peptide isolated from the centipede Scolopendra subspinipes mutilans. Int. J. Indust. Entomol. 31: 14-19.
    CrossRef
  9. Kwon YN, Lee JH, Kim IW, Kim SH, Yun EY, Nam SH, et al. 2013. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 23: 1381-1385.
    Pubmed CrossRef
  10. Choi H, Hwang JS, Lee DG. 2014. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect Mol. Biol. 23: 788-799.
    Pubmed CrossRef
  11. Lee W, Hwang JS, Lee DG. 2015. A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism. Biochimie 118: 176-184.
    Pubmed CrossRef
  12. Lee H, Hwang JS, Lee DG. 2016. Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis 21: 856-865.
    Pubmed CrossRef
  13. Lee H, Hwang JS, Lee J, Kim JI, Lee DG. 2015. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta. 1848:634-642.
    Pubmed CrossRef
  14. Lee JH, Kim IW, Kim SH, Kim MA, Yun EY, Nam SH, et al. 2015. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25: 1275-1280.
    Pubmed CrossRef
  15. Park YJ, Lee HY, Jung YS, Park JS, Hwang JS, Bae YS. 2015. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1. BMB Rep. 48: 479-484.
    Pubmed PMC CrossRef
  16. Scott MG, Hancock RE. 2000. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20: 407-431.
    CrossRef
  17. Powers JP, Hancock RE. 2003. The relationship between peptide structure and antibacterial activity. Peptides 24:1681-1691.
    Pubmed CrossRef
  18. Hancock RE, Chapple DS. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323.
    Pubmed PMC
  19. Hwang PM, Vogel HJ. 1998. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 76: 235-246.
    Pubmed CrossRef
  20. Fjell CD, Hiss JA, Hancock RE, Schneider G. 2012. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11: 37-51.
    CrossRef
  21. Jenssen H, Hamill P, Hancock RE. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19: 491-511.
    Pubmed PMC CrossRef
  22. Lee J, Lee DG. 2015. Antimicrobial peptides (AMPs) with Dual mechanisms: membrane disruption and apoptosis. J. Microbiol. Biotechnol. 25: 759-764.
    Pubmed CrossRef
  23. Rashid R, Veleba M, Kline KA. 2016. Focal targeting of the bacterial envelope by antimicrobial peptides. Front. Cell Dev. Biol. 4: 55.
    Pubmed PMC CrossRef
  24. Steinberg DA, Lehrer RI. 1997. Designer assays for antimicrobial peptides. Methods Mol. Biol. 78: 169-186.
    Pubmed
  25. Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760: 1732-1740.
    Pubmed CrossRef
  26. Boman HG. 2003. Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254: 197-215.
    Pubmed CrossRef
  27. Hale JD, Hancock RE. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5: 951-959.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2017; 27(1): 43-48

Published online January 28, 2017 https://doi.org/10.4014/jmb.1609.09057

Copyright © The Korean Society for Microbiology and Biotechnology.

Antimicrobial Activity of the Scolopendrasin V Peptide Identified from the Centipede Scolopendra subspinipes mutilans

Joon Ha Lee 1, In-Woo Kim 1, Mi-Ae Kim 1, Mi-Young Ahn 1, Eun-Young Yun 2 and Jae Sam Hwang 1*

1Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea, 2Graduate School of Integrated Bioindustry, Sejong University, Seoul 05006, Republic of Korea

Received: September 29, 2016; Accepted: October 14, 2016

Abstract

In a previous study, we analyzed the transcriptome of Scolopendra subspinipes mutilans using
next-generation sequencing technology and identified several antimicrobial peptide
candidates. One of the peptides, scolopendrasin V, was selected based on the physicochemical
properties of antimicrobial peptides using a bioinformatics strategy. In this study, we assessed
the antimicrobial activities of scolopendrasin V using the radial diffusion assay and colony
count assay. We also investigated the mode of action of scolopendrasin V using flow
cytometry. We found that scolopendrasin V’s mechanism of action involved binding to the
surface of microorganisms via a specific interaction with lipopolysaccharides, lipoteichoic
acid, and peptidoglycans, which are components of the bacterial membrane. These results
provide a basis for developing peptide antibiotics.

Keywords: Antimicrobial peptide, membrane damage, bacterial membrane, scolopendrasin V, Scolopendra subspinipes mutilans

References

  1. Ding Z, Zhao Y, Gao X. 1997. Medicinal insects in China. Ecol. Food Nutr. 36: 209-220.
    CrossRef
  2. Namba T, Ma YH, Inagaki K. 1988. Insect-derived crude drugs in Chinese Song Dynasty. J. Ethnopharmacol. 24: 247-285.
    CrossRef
  3. Pemberton RW. 1999. Insects and other arthropods used as drugs in Korean traditional medicine. J. Ethnopharmacol. 65: 207-216.
    CrossRef
  4. Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon 55: 274-279.
    Pubmed CrossRef
  5. Wenhua R, Shuangquan Z, Daxiang S, Kaiya Z, Guang Y. 2006. Induction, purification and characterization of an antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes mutilans. Indian J. Biochem. Biophys. 43: 88-93.
    Pubmed
  6. Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, et al. 2015. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J. Proteomics 114: 28-37.
    Pubmed CrossRef
  7. Yoo WG, Lee JH, Shin Y, Shim JY, Jung M, Kang BC, et al. 2014. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct. Integr. Genomics 14: 275-283.
    Pubmed CrossRef
  8. Lee JH, Kim IW, Kim MA, Yun EY, Nam SH, Ahn MY, et al. 2015. Scolopendrasin I: a novel antimicrobial peptide isolated from the centipede Scolopendra subspinipes mutilans. Int. J. Indust. Entomol. 31: 14-19.
    CrossRef
  9. Kwon YN, Lee JH, Kim IW, Kim SH, Yun EY, Nam SH, et al. 2013. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 23: 1381-1385.
    Pubmed CrossRef
  10. Choi H, Hwang JS, Lee DG. 2014. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect Mol. Biol. 23: 788-799.
    Pubmed CrossRef
  11. Lee W, Hwang JS, Lee DG. 2015. A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism. Biochimie 118: 176-184.
    Pubmed CrossRef
  12. Lee H, Hwang JS, Lee DG. 2016. Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis 21: 856-865.
    Pubmed CrossRef
  13. Lee H, Hwang JS, Lee J, Kim JI, Lee DG. 2015. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta. 1848:634-642.
    Pubmed CrossRef
  14. Lee JH, Kim IW, Kim SH, Kim MA, Yun EY, Nam SH, et al. 2015. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25: 1275-1280.
    Pubmed CrossRef
  15. Park YJ, Lee HY, Jung YS, Park JS, Hwang JS, Bae YS. 2015. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1. BMB Rep. 48: 479-484.
    Pubmed KoreaMed CrossRef
  16. Scott MG, Hancock RE. 2000. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20: 407-431.
    CrossRef
  17. Powers JP, Hancock RE. 2003. The relationship between peptide structure and antibacterial activity. Peptides 24:1681-1691.
    Pubmed CrossRef
  18. Hancock RE, Chapple DS. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323.
    Pubmed KoreaMed
  19. Hwang PM, Vogel HJ. 1998. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 76: 235-246.
    Pubmed CrossRef
  20. Fjell CD, Hiss JA, Hancock RE, Schneider G. 2012. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11: 37-51.
    CrossRef
  21. Jenssen H, Hamill P, Hancock RE. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19: 491-511.
    Pubmed KoreaMed CrossRef
  22. Lee J, Lee DG. 2015. Antimicrobial peptides (AMPs) with Dual mechanisms: membrane disruption and apoptosis. J. Microbiol. Biotechnol. 25: 759-764.
    Pubmed CrossRef
  23. Rashid R, Veleba M, Kline KA. 2016. Focal targeting of the bacterial envelope by antimicrobial peptides. Front. Cell Dev. Biol. 4: 55.
    Pubmed KoreaMed CrossRef
  24. Steinberg DA, Lehrer RI. 1997. Designer assays for antimicrobial peptides. Methods Mol. Biol. 78: 169-186.
    Pubmed
  25. Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760: 1732-1740.
    Pubmed CrossRef
  26. Boman HG. 2003. Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254: 197-215.
    Pubmed CrossRef
  27. Hale JD, Hancock RE. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5: 951-959.
    Pubmed CrossRef