전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. Ariza A, Moroz OV, Blagova EV, Turkenburg JP, Waterman J, Roberts SM, et al. 2013. Degradation of phytate by the 6phytase from Hafnia alvei: a combined structural and solution study. PLoS One 8: e65062.
    Pubmed PMC CrossRef
  2. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
    Pubmed CrossRef
  3. Bei JL, Chen Z, Fu J, Jiang ZY, Wang JW, Wang XZ. 2009. Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. J. Biotechnol. 139:186-193.
    Pubmed CrossRef
  4. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42: W252-W258.
    Pubmed PMC CrossRef
  5. Brinch-Pedersen H, Madsen CK, Holme IB, Dionisio G. 2014. Increased understanding of the cereal phytase complement for better mineral bio-availability and resource management. J. Cereal Sci. 59: 373-381.
    CrossRef
  6. Cang L. 2004. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. J. Environ. Sci. 16: 371-374.
  7. Chambers JE, Tavender TJ, Oka OB, Warwood S, Knight D, Bulleid NJ. 2010. The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by Ero1α. J. Biol. Chem. 285: 2920029207.
    Pubmed PMC CrossRef
  8. Craig DB, Dombkowski AA. 2013. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics 14: 346.
    Pubmed PMC CrossRef
  9. Dombkowski AA. 2003. Disulfide by Design™: a computational method for the rational design of disulfide bonds in proteins. Bioinformatics 19: 1852-1853.
    Pubmed CrossRef
  10. Dombkows ki A A, S ultana K Z, C raig DB. 2014. P rotein disulfide engineering. FEBS Lett. 588: 206-212.
  11. Emanuelsson O, Brunak S, von Heijne G, Nielsen H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953-971.
    Pubmed CrossRef
  12. Fu D, Huang H, Luo H, Wang Y, Yang P, Meng K, et al. 2008. A highly pH-stable phytase from Yersinia kristeensenii:cloning, expression, and characterization. Enzyme Microb. Technol. 42: 499-505.
    CrossRef
  13. Garrett JB, Kretz KA, O’Donoghue E, Kerovuo J, Kim W, Barton NR, et al. 2004. Enhancing the thermal tolerance and gas tric p erformance of a m icrobial p hytas e for use as a phosphate-mobilizing monogastric-feed supplement. Appl. Environ. Microbiol. 70: 3041-3046.
    Pubmed PMC CrossRef
  14. Gu W-N, Huang H-Q, Yang P-L, Luo H-Y, Meng K, Wang Y-R, Yao B. 2007. Gene cloning, expression and characterization of a novel phytase from Hafnia alvei. Chin. J. Biotechnol. 23:1017-1021.
  15. Guo C, Diao H, Lian Y, Yu H, Gao H, Zhang Y, Lin D. 2009. Recombinant expression and characterization of an epididymisspecific antimicrobial peptide BIN1b/SPAG11E. J. Biotechnol. 139: 33-37.
    Pubmed CrossRef
  16. Guo C, Liu Y, Yu H, Du K, Gan Y, Huang H. 2016. A novel strategy for thermostability improvement of trypsin based on N-glycosylation within the Ω-loop region. J. Microbiol. Biotechnol. 26: 1163-1172.
    Pubmed CrossRef
  17. Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD. 2012. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agric. Ecosyst. Environ. 150: 1-18.
    CrossRef
  18. Hesampour A, Siadat SER, Malboobi MA, Mohandesi N, Arab SS, Ghahremanpour MM. 2015. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl. Biochem. Biotechnol. 175: 2528-2541.
    Pubmed CrossRef
  19. Huang H, Luo H, Wang Y, Fu D, Shao N, Wang G, et al. 2008. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Appl. Microbiol. Biotechnol. 80: 417-426.
    Pubmed CrossRef
  20. Inoue H, Fujii T, Yoshimi M, Taylor LE II, Decker SR, Kishishita S, et al. 2013. Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from Acremonium cellulolyticus. J. Ind. Microbiol. Biotechnol. 40: 823-830.
    Pubmed CrossRef
  21. Jermutus L, Tessier M, Pasamontes L, van Loon A, Lehmann M. 2001. Structure-based chimeric enzymes as an alternative to directed enzyme evolution: phytase as a test case. J. Biotechnol. 85: 15-24.
    CrossRef
  22. Kim M-S, Lei X. 2008. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl. Microbiol. Biotechnol. 79: 69-75.
    Pubmed CrossRef
  23. Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi D. 2015. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biol. 21:750-765.
    Pubmed CrossRef
  24. Le QAT, Joo JC, Yoo YJ, Kim YH. 2012. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnol. Bioeng. 109: 867-876.
    Pubmed CrossRef
  25. Lei X-G, Weaver JD, Mullaney EJ, Ullah AH, Azain MJ. 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci. 1: 283-309.
    Pubmed CrossRef
  26. Liao Y, Li C-M, Chen H, Wu Q, Shan Z, Han X-Y. 2013. Site-directed mutagenesis improves the thermostability and catalytic efficiency of Aspergillus niger N25 phytase mutated by I44E and T252R. Appl. Biochem. Biotechnol. 171: 900-915.
    Pubmed CrossRef
  27. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. 2008. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36:D534-D538.
    Pubmed PMC CrossRef
  28. Markowitz VM, Mavromatis K, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271-2278.
    Pubmed CrossRef
  29. Merchant HA, McConnell EL, Liu F, Ramaswamy C, Kulkarni R P, B as it A W, M urdan S. 2 011. Ass es sment o f gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, r abbit and pig, a nd implications for t heir us e in drug development. Eur. J. Pharm. Sci. 42: 3-10.
    Pubmed CrossRef
  30. Miller RL, Fujii R. 2009. Plant community, primary productivity, and environmental conditions following wetland reestablishment in the Sacramento-San Joaquin Delta, California. Wetl. Ecol. Manag. 18: 1-16.
    CrossRef
  31. Nichols on FA, C hambers BJ, W illiams JR, U nwin R J. 1 999. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol. 70: 23-31.
    CrossRef
  32. Pandee P, Summpunn P, Wiyakrutta S, Isarangkul D, Meevootisom V. 2011. A thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J. Microbiol. 49: 257-264.
    Pubmed CrossRef
  33. Patil KR, Roune L, McHardy AC. 2012. The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS One 7: e38581.
    Pubmed PMC CrossRef
  34. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.
    Pubmed CrossRef
  35. Sanchez-Romero I, Ariza A, Wilson KS, Skjøt M, Vind J, De Maria L, et al. 2013. Mechanism of protein kinetic stabilization by engineered disulfide crosslinks. PLoS One 8: e70013.
    Pubmed PMC CrossRef
  36. Shivange AV, Dennig A, Schwaneberg U. 2014. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J. Biotechnol. 170: 68-72.
    Pubmed CrossRef
  37. Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U. 2012. Directed evolution of a highly active Yersinia mollaretii phytase. Appl. Microbiol. Biotechnol. 95: 405-418.
    Pubmed CrossRef
  38. Sone M, Kishigami S, Yoshihisa T, Ito K. 1997. Roles of disulfide bonds in bacterial alkaline phosphatase. J. Biol. Chem. 272: 6174-6178.
    Pubmed CrossRef
  39. Tan H, Wu X, Xie L, Huang Z, Gan B, Peng W. 2015. Cloning, overexpression, and characterization of a metagenomederived phytase with optimal activity at low pH. J. Microbiol. Biotechnol. 25: 930-935.
    Pubmed CrossRef
  40. Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. 2016. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl. Microbiol. Biotechnol. 100: 22252241.
    Pubmed CrossRef
  41. Tian YS, Peng RH, Xu J, Zhao W, Gao F, Fu XY, et al. 2011. Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity. Mol. Biol. Rep. 38: 977-982.
    Pubmed CrossRef
  42. Ullah AHJ, Mullaney EJ. 1996. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem. Biophys. Res. Commun. 227: 311-317.
    Pubmed CrossRef
  43. Vats P, Banerjee UC. 2005. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J. Ind. Microbiol. Biotechnol. 32: 141-147.
    Pubmed CrossRef
  44. Viader-Salvado JM, Gallegos-Lopez JA, Carreon-Trevino JG, Castillo-Galvan M, Rojo-Dominguez A, Guerrero-Olazaran M. 2010. Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Appl. Environ. Microbiol. 76: 6423-6430.
    Pubmed PMC CrossRef
  45. Vogt G, Argos P. 1997. Protein thermal stability: hydrogen bonds or internal packing? Fold Des. 2: S40-S46.
    CrossRef
  46. Wu T-H, Chen C-C, Cheng Y-S, Ko T-P, Lin C-Y, Lai H-L, et al. 2014. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. J. Biotechnol. 175: 1-6.
    Pubmed CrossRef
  47. Yao MZ, Wang X, Wang W, Fu YJ, Liang AH. 2013. Improving the thermostability of Escherichia coli p hytas e, appA, by enhancement of glycosylation. Biotechnol. Lett. 35:1669-1676.
    Pubmed CrossRef
  48. Zhang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX, Tong JM. 2010. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour. Technol. 101: 4125-4131.
    Pubmed CrossRef
  49. Zhang WM, Mullaney EJ, Lei XG. 2007. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl. Environ. Microbiol. 73:3069-3076.
    Pubmed PMC CrossRef
  50. Zhao QQ, Liu HL, Zhang Y, Zhang YZ. 2010. Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J. Biosci. Bioeng. 110: 638-645.
    Pubmed CrossRef
  51. Zhu WH, Qiao DR, Huang M, Yang G, Xu H, Cao Y. 2010. Modifying thermostability of AppA from Escherichia coli. Curr. Microbiol. 61: 267-273.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2016; 26(10): 1717-1722

Published online October 28, 2016 https://doi.org/10.4014/jmb.1604.04051

Copyright © The Korean Society for Microbiology and Biotechnology.

Enhancing the Thermal Resistance of a Novel Acidobacteria-Derived Phytase by Engineering of Disulfide Bridges

Hao Tan 1, 2, Renyun Miao 1, 2, Tianhai Liu 1, 2, Xuelian Cao 1, 2, Xiang Wu 1, 2, Liyuan Xie 1, 2, Zhongqian Huang 1, 2, Weihong Peng 1, 2 and Bingcheng Gan 1, 2*

1Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R. China, 2Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu 610066, P.R. China

Received: April 19, 2016; Accepted: June 29, 2016

Abstract

A novel phytase of Acidobacteria was identified from a soil metagenome, cloned,
overexpressed, and purified. It has low sequence similarity (<44%) to all the known phytases.
At the optimum pH (2.5), the phytase shows an activity level of 1,792 μmol/min/mg at
physiological temperature (37°C) and could retain 92% residual activity after 30 min,
indicating the phytase is acidophilic and acidostable. However the phytase shows poor
stability at high temperatures. To improve its thermal resistance, the enzyme was redesigned
using Disulfide by Design 2.0, introducing four additional disulfide bridges. The half-life time
of the engineered phytase at 60°C and 80°C, respectively, is 3.0× and 2.8× longer than the
wild-type, and its activity and acidostability are not significantly affected.

Keywords: phytase, acidophilic, acidostable, site-directed mutagenesis, disulfide bridge, thermostable

References

  1. Ariza A, Moroz OV, Blagova EV, Turkenburg JP, Waterman J, Roberts SM, et al. 2013. Degradation of phytate by the 6phytase from Hafnia alvei: a combined structural and solution study. PLoS One 8: e65062.
    Pubmed KoreaMed CrossRef
  2. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
    Pubmed CrossRef
  3. Bei JL, Chen Z, Fu J, Jiang ZY, Wang JW, Wang XZ. 2009. Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. J. Biotechnol. 139:186-193.
    Pubmed CrossRef
  4. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42: W252-W258.
    Pubmed KoreaMed CrossRef
  5. Brinch-Pedersen H, Madsen CK, Holme IB, Dionisio G. 2014. Increased understanding of the cereal phytase complement for better mineral bio-availability and resource management. J. Cereal Sci. 59: 373-381.
    CrossRef
  6. Cang L. 2004. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. J. Environ. Sci. 16: 371-374.
  7. Chambers JE, Tavender TJ, Oka OB, Warwood S, Knight D, Bulleid NJ. 2010. The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by Ero1α. J. Biol. Chem. 285: 2920029207.
    Pubmed KoreaMed CrossRef
  8. Craig DB, Dombkowski AA. 2013. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics 14: 346.
    Pubmed KoreaMed CrossRef
  9. Dombkowski AA. 2003. Disulfide by Design™: a computational method for the rational design of disulfide bonds in proteins. Bioinformatics 19: 1852-1853.
    Pubmed CrossRef
  10. Dombkows ki A A, S ultana K Z, C raig DB. 2014. P rotein disulfide engineering. FEBS Lett. 588: 206-212.
  11. Emanuelsson O, Brunak S, von Heijne G, Nielsen H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953-971.
    Pubmed CrossRef
  12. Fu D, Huang H, Luo H, Wang Y, Yang P, Meng K, et al. 2008. A highly pH-stable phytase from Yersinia kristeensenii:cloning, expression, and characterization. Enzyme Microb. Technol. 42: 499-505.
    CrossRef
  13. Garrett JB, Kretz KA, O’Donoghue E, Kerovuo J, Kim W, Barton NR, et al. 2004. Enhancing the thermal tolerance and gas tric p erformance of a m icrobial p hytas e for use as a phosphate-mobilizing monogastric-feed supplement. Appl. Environ. Microbiol. 70: 3041-3046.
    Pubmed KoreaMed CrossRef
  14. Gu W-N, Huang H-Q, Yang P-L, Luo H-Y, Meng K, Wang Y-R, Yao B. 2007. Gene cloning, expression and characterization of a novel phytase from Hafnia alvei. Chin. J. Biotechnol. 23:1017-1021.
  15. Guo C, Diao H, Lian Y, Yu H, Gao H, Zhang Y, Lin D. 2009. Recombinant expression and characterization of an epididymisspecific antimicrobial peptide BIN1b/SPAG11E. J. Biotechnol. 139: 33-37.
    Pubmed CrossRef
  16. Guo C, Liu Y, Yu H, Du K, Gan Y, Huang H. 2016. A novel strategy for thermostability improvement of trypsin based on N-glycosylation within the Ω-loop region. J. Microbiol. Biotechnol. 26: 1163-1172.
    Pubmed CrossRef
  17. Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD. 2012. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agric. Ecosyst. Environ. 150: 1-18.
    CrossRef
  18. Hesampour A, Siadat SER, Malboobi MA, Mohandesi N, Arab SS, Ghahremanpour MM. 2015. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl. Biochem. Biotechnol. 175: 2528-2541.
    Pubmed CrossRef
  19. Huang H, Luo H, Wang Y, Fu D, Shao N, Wang G, et al. 2008. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Appl. Microbiol. Biotechnol. 80: 417-426.
    Pubmed CrossRef
  20. Inoue H, Fujii T, Yoshimi M, Taylor LE II, Decker SR, Kishishita S, et al. 2013. Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from Acremonium cellulolyticus. J. Ind. Microbiol. Biotechnol. 40: 823-830.
    Pubmed CrossRef
  21. Jermutus L, Tessier M, Pasamontes L, van Loon A, Lehmann M. 2001. Structure-based chimeric enzymes as an alternative to directed enzyme evolution: phytase as a test case. J. Biotechnol. 85: 15-24.
    CrossRef
  22. Kim M-S, Lei X. 2008. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl. Microbiol. Biotechnol. 79: 69-75.
    Pubmed CrossRef
  23. Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi D. 2015. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biol. 21:750-765.
    Pubmed CrossRef
  24. Le QAT, Joo JC, Yoo YJ, Kim YH. 2012. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnol. Bioeng. 109: 867-876.
    Pubmed CrossRef
  25. Lei X-G, Weaver JD, Mullaney EJ, Ullah AH, Azain MJ. 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci. 1: 283-309.
    Pubmed CrossRef
  26. Liao Y, Li C-M, Chen H, Wu Q, Shan Z, Han X-Y. 2013. Site-directed mutagenesis improves the thermostability and catalytic efficiency of Aspergillus niger N25 phytase mutated by I44E and T252R. Appl. Biochem. Biotechnol. 171: 900-915.
    Pubmed CrossRef
  27. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. 2008. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36:D534-D538.
    Pubmed KoreaMed CrossRef
  28. Markowitz VM, Mavromatis K, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271-2278.
    Pubmed CrossRef
  29. Merchant HA, McConnell EL, Liu F, Ramaswamy C, Kulkarni R P, B as it A W, M urdan S. 2 011. Ass es sment o f gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, r abbit and pig, a nd implications for t heir us e in drug development. Eur. J. Pharm. Sci. 42: 3-10.
    Pubmed CrossRef
  30. Miller RL, Fujii R. 2009. Plant community, primary productivity, and environmental conditions following wetland reestablishment in the Sacramento-San Joaquin Delta, California. Wetl. Ecol. Manag. 18: 1-16.
    CrossRef
  31. Nichols on FA, C hambers BJ, W illiams JR, U nwin R J. 1 999. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol. 70: 23-31.
    CrossRef
  32. Pandee P, Summpunn P, Wiyakrutta S, Isarangkul D, Meevootisom V. 2011. A thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J. Microbiol. 49: 257-264.
    Pubmed CrossRef
  33. Patil KR, Roune L, McHardy AC. 2012. The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS One 7: e38581.
    Pubmed KoreaMed CrossRef
  34. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.
    Pubmed CrossRef
  35. Sanchez-Romero I, Ariza A, Wilson KS, Skjøt M, Vind J, De Maria L, et al. 2013. Mechanism of protein kinetic stabilization by engineered disulfide crosslinks. PLoS One 8: e70013.
    Pubmed KoreaMed CrossRef
  36. Shivange AV, Dennig A, Schwaneberg U. 2014. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J. Biotechnol. 170: 68-72.
    Pubmed CrossRef
  37. Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U. 2012. Directed evolution of a highly active Yersinia mollaretii phytase. Appl. Microbiol. Biotechnol. 95: 405-418.
    Pubmed CrossRef
  38. Sone M, Kishigami S, Yoshihisa T, Ito K. 1997. Roles of disulfide bonds in bacterial alkaline phosphatase. J. Biol. Chem. 272: 6174-6178.
    Pubmed CrossRef
  39. Tan H, Wu X, Xie L, Huang Z, Gan B, Peng W. 2015. Cloning, overexpression, and characterization of a metagenomederived phytase with optimal activity at low pH. J. Microbiol. Biotechnol. 25: 930-935.
    Pubmed CrossRef
  40. Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. 2016. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl. Microbiol. Biotechnol. 100: 22252241.
    Pubmed CrossRef
  41. Tian YS, Peng RH, Xu J, Zhao W, Gao F, Fu XY, et al. 2011. Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity. Mol. Biol. Rep. 38: 977-982.
    Pubmed CrossRef
  42. Ullah AHJ, Mullaney EJ. 1996. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem. Biophys. Res. Commun. 227: 311-317.
    Pubmed CrossRef
  43. Vats P, Banerjee UC. 2005. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J. Ind. Microbiol. Biotechnol. 32: 141-147.
    Pubmed CrossRef
  44. Viader-Salvado JM, Gallegos-Lopez JA, Carreon-Trevino JG, Castillo-Galvan M, Rojo-Dominguez A, Guerrero-Olazaran M. 2010. Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Appl. Environ. Microbiol. 76: 6423-6430.
    Pubmed KoreaMed CrossRef
  45. Vogt G, Argos P. 1997. Protein thermal stability: hydrogen bonds or internal packing? Fold Des. 2: S40-S46.
    CrossRef
  46. Wu T-H, Chen C-C, Cheng Y-S, Ko T-P, Lin C-Y, Lai H-L, et al. 2014. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. J. Biotechnol. 175: 1-6.
    Pubmed CrossRef
  47. Yao MZ, Wang X, Wang W, Fu YJ, Liang AH. 2013. Improving the thermostability of Escherichia coli p hytas e, appA, by enhancement of glycosylation. Biotechnol. Lett. 35:1669-1676.
    Pubmed CrossRef
  48. Zhang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX, Tong JM. 2010. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour. Technol. 101: 4125-4131.
    Pubmed CrossRef
  49. Zhang WM, Mullaney EJ, Lei XG. 2007. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl. Environ. Microbiol. 73:3069-3076.
    Pubmed KoreaMed CrossRef
  50. Zhao QQ, Liu HL, Zhang Y, Zhang YZ. 2010. Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J. Biosci. Bioeng. 110: 638-645.
    Pubmed CrossRef
  51. Zhu WH, Qiao DR, Huang M, Yang G, Xu H, Cao Y. 2010. Modifying thermostability of AppA from Escherichia coli. Curr. Microbiol. 61: 267-273.
    Pubmed CrossRef