전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Antelmann H, Van Dijl JM, Bron S, Hecker M. 2006. Proteomic survey through secretome of Bacillus subtilis. Methods Biochem. Anal. 49: 179.
    Pubmed
  2. Bottone EJ. 2003. Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: preliminary report. J. Med. Microbiol. 52: 69-74.
    Pubmed CrossRef
  3. Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, Grossman AD. 2002. Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J. Bacteriol. 184: 4881-4890.
    Pubmed PMC CrossRef
  4. Carroll RK, Rivera FE, Cavaco CK, Johnson GM, Martin D, Shaw LN. 2 014. The l one S41 family C-terminal p rocessing protease in Staphylococcus aureus is localized to the cell wall and contributes to virulence. Microbiology 160: 1737-1748.
    Pubmed PMC CrossRef
  5. Choi N-S, Chung D-M, Park C-S, Ahn K-H, Kim JS, Song JJ, et al. 2010. Expression and identification of a minor extracellular fibrinolytic enzyme (Vpr) from Bacillus subtilis KCTC 3014. Biotechnol. Bioprocess Eng. 15: 446-452.
    CrossRef
  6. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676.
    Pubmed CrossRef
  7. El-Refai H, Abdel-Naby M, Gaballa A, El-Araby M, Fattah AA. 2005. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem. 40: 2325-2332.
    CrossRef
  8. Fu LL, Xu ZR, Li WF, Shuai JB, Lu P, Hu CX. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1-12.
    Pubmed CrossRef
  9. Gao J, Li X, Feng Y, Zhang B, Miao S, Wang L, Wang N. 2012. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis. Biochem. Biophys. Res. Commun. 423: 45-49.
    Pubmed CrossRef
  10. Garmory HS, Titball RW. 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72: 6757-6763.
    Pubmed PMC CrossRef
  11. Ghosh A, Chakrabarti K, Chattopadhyay D. 2008. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol. 35: 825-834.
    Pubmed CrossRef
  12. Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D. 2005. A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5: 3696-3711.
    Pubmed CrossRef
  13. Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. 2001. Interrelating different types of genomic data, from proteome to secretome: ‘oming in on function. Genome Res. 11: 1463-1468.
    Pubmed CrossRef
  14. Grundling A, Schneewind O. 2007. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104: 8478-8483.
    Pubmed PMC CrossRef
  15. Gupta M, Rao KK. 2009. Epr plays a key role in DegUmediated swarming motility of Bacillus subtilis. FEMS Microbiol. Lett. 295: 187-194.
    Pubmed CrossRef
  16. Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.
    Pubmed CrossRef
  17. Gupta RK, Prasad D, Sathesh J, Naidu RB, Kamini NR, Palanivel S, Gowthaman MK. 2012. Scale-up of an alkaline protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients. J. Microbiol. Biotechnol. 22: 1230-1236.
    Pubmed CrossRef
  18. Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, et al. 2014. Cell physiology of the biotechnological relevant bacterium Bacillus pumilus — an omics-based approach. J. Biotechnol. 192: 204-214.
    Pubmed CrossRef
  19. Huang Q, Peng Y, Li X, Wang H, Zhang Y. 2003. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. 46: 169-173.
    Pubmed CrossRef
  20. Huang R, Yang Q, Feng H. 2015. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence. Acta Biochim. Biophs. Sin. 47: 98-105.
    Pubmed CrossRef
  21. Jaouadi NZ, Jaouadi B, Hlima HB, Rekik H, Belhoul M, Hmidi M, et al. 2014. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS One 9: e108367.
    Pubmed PMC CrossRef
  22. Jayakumar R, Jayashree S, Annapurna B, Seshadri S. 2012. Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl. Biochem. Biotechnol. 168: 1849-1866.
    Pubmed CrossRef
  23. Kho CW, Park SG, Cho S, Lee DH, Myung PK, Park BC. 2005. Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr. Purif. 39: 1-7.
    Pubmed CrossRef
  24. Kim HK, Choi HJ, Kim MH, Sohn CB, Oh TK. 2002. Expression and characterization of Ca2+-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212.
    CrossRef
  25. Klug-Santner BG, Schnitzhofer W, Vrsanska M, Weber J, Agrawal PB, Nierstrasz VA, Guebitz GM. 2006. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J. Biotechnol. 121: 390-401.
    Pubmed CrossRef
  26. Kobayashi K, Sudiarta IP, Kodama T, Fukushima T, Ara K, Ozaki K, Sekiguchi J. 2012. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J. Biol. Chem. 287: 9765-9776.
    Pubmed PMC CrossRef
  27. Kuhad RC, Singh A. 2013. Biotechnology for Environmental Management and Resource Recovery. Springer, Berlin/Heidberg.
    CrossRef
  28. Kunst F, Ogasawara N, Moszer I, Albertini A, Alloni G, Azevedo V, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256.
    Pubmed CrossRef
  29. Lanigan-Gerdes S, Dooley AN, Faull KF, Lazazzera BA. 2007. Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis. Mol. Microbiol. 65: 1321-1333.
    Pubmed CrossRef
  30. Lechat P, Hummel L, Rousseau S, Moszer I. 2007. GenoList:an integrated environment for comparative analysis of microbial genomes. Nucleic Acids Res. 36: D469-D474.
    Pubmed PMC CrossRef
  31. Lee SJ, Kim DM, Bae KH, Byun SM, Chung JH. 2000. Enhancement of secretion and extracellular stability of staphylokinase in Bacillus subtilis by wprA gene disruption. Appl. Environ. Microbiol. 66: 476-480.
    Pubmed PMC CrossRef
  32. Manns DC, Churey JJ, Worobo RW. 2012. Functional assignment of YvgO, a novel set of purified and chemically characterized proteinaceous antifungal variants produced by Bacillus thuringiensis SF361. Appl. Environ. Microbiol. 78:2543-2552.
    Pubmed PMC CrossRef
  33. Manns DC, Churey JJ, Worobo RW. 2014. Nutrientdependent efficacy of the antifungal protein YvgO correlates to cellular proliferation rate in Candida albicans 3153A and Byssochlamys fulva H25. Probiotics Antimicrob. Proteins 6: 198-207.
    Pubmed CrossRef
  34. Molina CA, Cana-Roca JF, Osuna A, Vilchez S. 2010. Selection of a Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae. Appl. Environ. Microbiol. 76: 1320-1327.
    Pubmed PMC CrossRef
  35. Nguyen HD, Phan T, Schumann W. 2011. Analysis and application of Bacillus subtilis sortases to anchor recombinant proteins on the cell wall. AMB Express 1: 22.
    Pubmed PMC CrossRef
  36. Page MJ, Di Cera E. 2008. Serine peptidases: classification, structure and function. Cell. Mol. Life Sci. 65: 1220-1236.
    Pubmed CrossRef
  37. Paolicchi A, Dominici S, Pieri L, Maellaro E, Pompella A. 2002. Glutathione catabolism as a signaling mechanism. Biochem. Pharmacol. 64: 1027-1035.
    CrossRef
  38. Poorna CA, Prema P. 2006. Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem. Eng. J. 32: 106-112.
    CrossRef
  39. Rawlings ND, Barrett AJ. 1993. Evolutionary families of peptidases. Biochem. J. 290: 205-218.
    Pubmed PMC CrossRef
  40. Rawlings ND, Waller M, Barrett AJ, Bateman A. 2014. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42: D503-D509.
    Pubmed PMC CrossRef
  41. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.
    Pubmed CrossRef
  42. Shah IM, Dworkin J. 2010. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol. Microbiol. 75: 1232-1243.
    Pubmed CrossRef
  43. Shao H, Cao Q, Zhao H, Tan X, Feng H. 2015. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus. J. Gen. Appl. Microbiol. 61: 124-131.
    Pubmed CrossRef
  44. Sibbald MJ, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJ, et al. 2006. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol. Mol. Biol. Rev. 70: 755-788.
    Pubmed PMC CrossRef
  45. Stephenson K, J ensen C, J ørgensen S , Harw ood C. 2 002. Simultaneous inactivation of the wprA and dltB genes of Bacillus subtilis reduces the yield of α-amylase. Lett. Appl. Microbiol. 34: 394-397.
    Pubmed CrossRef
  46. Suzuki T, Tahara Y. 2003. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gammapolyglutamic acid degradation. J. Bacteriol. 185: 2379-2382.
    Pubmed PMC CrossRef
  47. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, et al. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 68: 207-233.
    Pubmed PMC CrossRef
  48. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515-547.
    Pubmed PMC CrossRef
  49. Vollmer W, Joris B, Charlier P, Foster S. 2008. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32: 259-286.
    Pubmed CrossRef
  50. Wang HY, Liu DM, Liu Y, Cheng CF, Ma QY, Huang Q, Zhang YZ. 2007. Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett. Appl. Microbiol. 44: 1-6.
    Pubmed CrossRef
  51. Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310.
    Pubmed CrossRef
  52. Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable Web server for fast metagenomic sequence analysis. BMC Genomics 12: 444.
    Pubmed PMC CrossRef
  53. Yao D, Qu J, Chang P, Tao Y, Yang D. 2012. Production and characterization of alkaline protease from hemoglobindegrading Bacillus pumilus NJM4 to produce fermented blood meal. J. Food Sci. Technol. 49: 626-631.
    Pubmed PMC CrossRef
  54. Yu SQ, Gui JH, Wang HY. 2014. Proteome analysis of Bacillus pumilus extracellular proteins by two dimensional electrophoresis and identification of differential proteins under alkaline stress. Chin. J. Appl. Environ. Biol. 2014: 217-222.
  55. Zhao C-W, Wang H-Y, Zhang Y-Z, Feng H. 2012. Draft genome sequence of Bacillus pumilus BA06, a producer of alkaline serine protease with leather-dehairing function. J. Bacteriol. 194: 6668-6669.
    Pubmed PMC CrossRef
  56. Zhou M, Theunissen D, Wels M, Siezen RJ. 2010. LABsecretome:a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics 11: 651.
    Pubmed PMC CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2016; 26(11): 1993-2005

Published online November 28, 2016 https://doi.org/10.4014/jmb.1602.02042

Copyright © The Korean Society for Microbiology and Biotechnology.

Extracellular Proteome Profiling of Bacillus pumilus SCU11 Producing Alkaline Protease for Dehairing

Chao Wang 1, Shiqiang Yu 1, Ting Song 1, Tingting He 1, Huanhuan Shao 1 and Haiyan Wang 1*

Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, P.R. China

Received: February 22, 2016; Accepted: July 25, 2016

Abstract

Bacillus pumilus is one of the most characterized microorganisms that are used for high-level
production of select industrial enzymes. A novel B. pumilus SCU11 strain possessing high
alkaline protease activity was obtained in our previous work. The culture supernatant of this
strain showed efficient dehairing capability with minimal collagen damage, indicating
promising potential applications in the leather industry. In this study, the strain’s extracellular
proteome was identified by LC-MS/MS-based shotgun proteomic analysis, and their related
secretory pathways were characterized by BLAST searches. A total of 513 proteins, including
100 actual secreted and 413 intracellular proteins, were detected in the extracellular proteome.
The functions of these secreted proteins were elucidated and four complete secretory systems
(Sec, Tat, Com, and ABC transporter) were proposed for B. pumilus. These data provide
B. pumilus a comprehensive extracellular proteome profile, which is a valuable theoretical and
applicative basis for future genetic modifications and development of industrial enzymes.

Keywords: Bacillus pumilus, secretome, protease, secretory pathway

References

  1. Antelmann H, Van Dijl JM, Bron S, Hecker M. 2006. Proteomic survey through secretome of Bacillus subtilis. Methods Biochem. Anal. 49: 179.
    Pubmed
  2. Bottone EJ. 2003. Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: preliminary report. J. Med. Microbiol. 52: 69-74.
    Pubmed CrossRef
  3. Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, Grossman AD. 2002. Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J. Bacteriol. 184: 4881-4890.
    Pubmed KoreaMed CrossRef
  4. Carroll RK, Rivera FE, Cavaco CK, Johnson GM, Martin D, Shaw LN. 2 014. The l one S41 family C-terminal p rocessing protease in Staphylococcus aureus is localized to the cell wall and contributes to virulence. Microbiology 160: 1737-1748.
    Pubmed KoreaMed CrossRef
  5. Choi N-S, Chung D-M, Park C-S, Ahn K-H, Kim JS, Song JJ, et al. 2010. Expression and identification of a minor extracellular fibrinolytic enzyme (Vpr) from Bacillus subtilis KCTC 3014. Biotechnol. Bioprocess Eng. 15: 446-452.
    CrossRef
  6. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676.
    Pubmed CrossRef
  7. El-Refai H, Abdel-Naby M, Gaballa A, El-Araby M, Fattah AA. 2005. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem. 40: 2325-2332.
    CrossRef
  8. Fu LL, Xu ZR, Li WF, Shuai JB, Lu P, Hu CX. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1-12.
    Pubmed CrossRef
  9. Gao J, Li X, Feng Y, Zhang B, Miao S, Wang L, Wang N. 2012. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis. Biochem. Biophys. Res. Commun. 423: 45-49.
    Pubmed CrossRef
  10. Garmory HS, Titball RW. 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72: 6757-6763.
    Pubmed KoreaMed CrossRef
  11. Ghosh A, Chakrabarti K, Chattopadhyay D. 2008. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol. 35: 825-834.
    Pubmed CrossRef
  12. Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D. 2005. A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5: 3696-3711.
    Pubmed CrossRef
  13. Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. 2001. Interrelating different types of genomic data, from proteome to secretome: ‘oming in on function. Genome Res. 11: 1463-1468.
    Pubmed CrossRef
  14. Grundling A, Schneewind O. 2007. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104: 8478-8483.
    Pubmed KoreaMed CrossRef
  15. Gupta M, Rao KK. 2009. Epr plays a key role in DegUmediated swarming motility of Bacillus subtilis. FEMS Microbiol. Lett. 295: 187-194.
    Pubmed CrossRef
  16. Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.
    Pubmed CrossRef
  17. Gupta RK, Prasad D, Sathesh J, Naidu RB, Kamini NR, Palanivel S, Gowthaman MK. 2012. Scale-up of an alkaline protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients. J. Microbiol. Biotechnol. 22: 1230-1236.
    Pubmed CrossRef
  18. Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, et al. 2014. Cell physiology of the biotechnological relevant bacterium Bacillus pumilus — an omics-based approach. J. Biotechnol. 192: 204-214.
    Pubmed CrossRef
  19. Huang Q, Peng Y, Li X, Wang H, Zhang Y. 2003. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. 46: 169-173.
    Pubmed CrossRef
  20. Huang R, Yang Q, Feng H. 2015. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence. Acta Biochim. Biophs. Sin. 47: 98-105.
    Pubmed CrossRef
  21. Jaouadi NZ, Jaouadi B, Hlima HB, Rekik H, Belhoul M, Hmidi M, et al. 2014. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS One 9: e108367.
    Pubmed KoreaMed CrossRef
  22. Jayakumar R, Jayashree S, Annapurna B, Seshadri S. 2012. Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl. Biochem. Biotechnol. 168: 1849-1866.
    Pubmed CrossRef
  23. Kho CW, Park SG, Cho S, Lee DH, Myung PK, Park BC. 2005. Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr. Purif. 39: 1-7.
    Pubmed CrossRef
  24. Kim HK, Choi HJ, Kim MH, Sohn CB, Oh TK. 2002. Expression and characterization of Ca2+-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212.
    CrossRef
  25. Klug-Santner BG, Schnitzhofer W, Vrsanska M, Weber J, Agrawal PB, Nierstrasz VA, Guebitz GM. 2006. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J. Biotechnol. 121: 390-401.
    Pubmed CrossRef
  26. Kobayashi K, Sudiarta IP, Kodama T, Fukushima T, Ara K, Ozaki K, Sekiguchi J. 2012. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J. Biol. Chem. 287: 9765-9776.
    Pubmed KoreaMed CrossRef
  27. Kuhad RC, Singh A. 2013. Biotechnology for Environmental Management and Resource Recovery. Springer, Berlin/Heidberg.
    CrossRef
  28. Kunst F, Ogasawara N, Moszer I, Albertini A, Alloni G, Azevedo V, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256.
    Pubmed CrossRef
  29. Lanigan-Gerdes S, Dooley AN, Faull KF, Lazazzera BA. 2007. Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis. Mol. Microbiol. 65: 1321-1333.
    Pubmed CrossRef
  30. Lechat P, Hummel L, Rousseau S, Moszer I. 2007. GenoList:an integrated environment for comparative analysis of microbial genomes. Nucleic Acids Res. 36: D469-D474.
    Pubmed KoreaMed CrossRef
  31. Lee SJ, Kim DM, Bae KH, Byun SM, Chung JH. 2000. Enhancement of secretion and extracellular stability of staphylokinase in Bacillus subtilis by wprA gene disruption. Appl. Environ. Microbiol. 66: 476-480.
    Pubmed KoreaMed CrossRef
  32. Manns DC, Churey JJ, Worobo RW. 2012. Functional assignment of YvgO, a novel set of purified and chemically characterized proteinaceous antifungal variants produced by Bacillus thuringiensis SF361. Appl. Environ. Microbiol. 78:2543-2552.
    Pubmed KoreaMed CrossRef
  33. Manns DC, Churey JJ, Worobo RW. 2014. Nutrientdependent efficacy of the antifungal protein YvgO correlates to cellular proliferation rate in Candida albicans 3153A and Byssochlamys fulva H25. Probiotics Antimicrob. Proteins 6: 198-207.
    Pubmed CrossRef
  34. Molina CA, Cana-Roca JF, Osuna A, Vilchez S. 2010. Selection of a Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae. Appl. Environ. Microbiol. 76: 1320-1327.
    Pubmed KoreaMed CrossRef
  35. Nguyen HD, Phan T, Schumann W. 2011. Analysis and application of Bacillus subtilis sortases to anchor recombinant proteins on the cell wall. AMB Express 1: 22.
    Pubmed KoreaMed CrossRef
  36. Page MJ, Di Cera E. 2008. Serine peptidases: classification, structure and function. Cell. Mol. Life Sci. 65: 1220-1236.
    Pubmed CrossRef
  37. Paolicchi A, Dominici S, Pieri L, Maellaro E, Pompella A. 2002. Glutathione catabolism as a signaling mechanism. Biochem. Pharmacol. 64: 1027-1035.
    CrossRef
  38. Poorna CA, Prema P. 2006. Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem. Eng. J. 32: 106-112.
    CrossRef
  39. Rawlings ND, Barrett AJ. 1993. Evolutionary families of peptidases. Biochem. J. 290: 205-218.
    Pubmed KoreaMed CrossRef
  40. Rawlings ND, Waller M, Barrett AJ, Bateman A. 2014. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42: D503-D509.
    Pubmed KoreaMed CrossRef
  41. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.
    Pubmed CrossRef
  42. Shah IM, Dworkin J. 2010. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol. Microbiol. 75: 1232-1243.
    Pubmed CrossRef
  43. Shao H, Cao Q, Zhao H, Tan X, Feng H. 2015. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus. J. Gen. Appl. Microbiol. 61: 124-131.
    Pubmed CrossRef
  44. Sibbald MJ, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJ, et al. 2006. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol. Mol. Biol. Rev. 70: 755-788.
    Pubmed KoreaMed CrossRef
  45. Stephenson K, J ensen C, J ørgensen S , Harw ood C. 2 002. Simultaneous inactivation of the wprA and dltB genes of Bacillus subtilis reduces the yield of α-amylase. Lett. Appl. Microbiol. 34: 394-397.
    Pubmed CrossRef
  46. Suzuki T, Tahara Y. 2003. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gammapolyglutamic acid degradation. J. Bacteriol. 185: 2379-2382.
    Pubmed KoreaMed CrossRef
  47. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, et al. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 68: 207-233.
    Pubmed KoreaMed CrossRef
  48. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515-547.
    Pubmed KoreaMed CrossRef
  49. Vollmer W, Joris B, Charlier P, Foster S. 2008. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32: 259-286.
    Pubmed CrossRef
  50. Wang HY, Liu DM, Liu Y, Cheng CF, Ma QY, Huang Q, Zhang YZ. 2007. Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett. Appl. Microbiol. 44: 1-6.
    Pubmed CrossRef
  51. Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310.
    Pubmed CrossRef
  52. Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable Web server for fast metagenomic sequence analysis. BMC Genomics 12: 444.
    Pubmed KoreaMed CrossRef
  53. Yao D, Qu J, Chang P, Tao Y, Yang D. 2012. Production and characterization of alkaline protease from hemoglobindegrading Bacillus pumilus NJM4 to produce fermented blood meal. J. Food Sci. Technol. 49: 626-631.
    Pubmed KoreaMed CrossRef
  54. Yu SQ, Gui JH, Wang HY. 2014. Proteome analysis of Bacillus pumilus extracellular proteins by two dimensional electrophoresis and identification of differential proteins under alkaline stress. Chin. J. Appl. Environ. Biol. 2014: 217-222.
  55. Zhao C-W, Wang H-Y, Zhang Y-Z, Feng H. 2012. Draft genome sequence of Bacillus pumilus BA06, a producer of alkaline serine protease with leather-dehairing function. J. Bacteriol. 194: 6668-6669.
    Pubmed KoreaMed CrossRef
  56. Zhou M, Theunissen D, Wels M, Siezen RJ. 2010. LABsecretome:a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics 11: 651.
    Pubmed KoreaMed CrossRef