전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, et al. 2010. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol. Rev. 34: 883-923.
    Pubmed CrossRef
  2. Bailey JM, Biely P, Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23:257-270.
    CrossRef
  3. Chen M, Nagarajan V. 1993. The roles of signal peptide and mature protein in RNase (barnase) export from Bacillus subtilis. Mol. Gen. Genet. 239: 409-415.
    Pubmed CrossRef
  4. Deutscher MP. 2015. How bacterial cells keep ribonucleases under control. FEMS Microbiol. Rev. 39: 350-361.
    Pubmed PMC CrossRef
  5. Hahnen E, Znamenskaya L, Koczan D, Leshchinskaya I, Hobom G. 2000. A novel secreted ribonuclease from Bacillus intermedius: gene structure and regulatory control. Mol. Gen. Genet. 263: 571-580.
    Pubmed CrossRef
  6. Härtl B, Wehrl W, Wiegert T, Homuth G, Schumann W. 2001. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J. Bacteriol. 183: 2696-2699.
    Pubmed PMC CrossRef
  7. Hartley RW. 1988. Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202: 913-915.
    CrossRef
  8. Hartley RW. 1989. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem. Sci. 14: 450-454.
    CrossRef
  9. Hartley RW, Barker EA. 1972. Amino-acid sequence of extracellular ribonuclease (barnase) of Bacillus amyloliquefaciens. Nat. New Biol. 235: 15-16.
    Pubmed CrossRef
  10. Hoffmann K, Wollherr A, Larsen M, Rachinger M, Liesegang H, Ehrenreich A, Meinhardt F. 2010. Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl. Environ. Microbiol. 76: 5046-5057.
    Pubmed PMC CrossRef
  11. Hoi LT, Voigt B, Jürgen B, Ehrenreich A, Gottschalk G, Evers S, et al. 2006. The phosphate-starvation response of Bacillus licheniformis. Proteomics 6: 3582-3601.
    Pubmed CrossRef
  12. Jeong MY, Lee ER, Yun CW, Cho SG, Choi YJ. 2006. Posttranscriptional regulation of the xynA expression by a novel mRNA binding protein, XaiF. Biochem. Biophys. Res. Commun. 351: 153-158.
    Pubmed CrossRef
  13. Jürgen B, Barken KB, Tobisch S, Pioch D, Wumpelmann M, Hecker M, Schweder T. 2005. Application of an electric DNA-chip for the expression analysis of bioprocess-relevant marker genes of Bacillus subtilis. Biotechnol. Bioeng. 92: 299-307.
    Pubmed CrossRef
  14. Mossakowska DE, Nyberg K, Fersht AR. 1989. Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (Barnase) and investigation of key residues in catalysis by site-directed mutagenesis. Biochemistry 28: 3843-3850.
    Pubmed CrossRef
  15. Nijland R, Hall MJ, Burgess JG. 2010. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5: e15668.
    Pubmed PMC CrossRef
  16. Paddon CJ, Hartley RW. 1986. Cloning, sequencing and transcription of an inactivated copy of Bacillus amyloliquefaciens extracellular ribonuclease (barnase). Gene 40: 231-239.
    CrossRef
  17. Schulga AA, Nurkiyanova KM, Zakharyev VM, Kirpichnikov MP, Skryabin KG. 1992. Cloning of the gene encoding RNase binase from Bacillus intermedius 7P. Nucleic Acids Res. 20: 2375.
    Pubmed PMC CrossRef
  18. Sharipova MR, Lopukhov LV, Vershinina OA, Leshchinskaya IB. 2005. Some secretion characteristics of bacterial ribonucleases. Microbiology 74: 27-31.
    CrossRef
  19. Stülke J, Hillen W. 2000. Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849-880.
    Pubmed CrossRef
  20. Truong LV. 2006. Characterization of the pectinolytic enzymes of the marine psychrophilic bacterium Pseudoalteromonas haloplanktis strain ANT/505. Ph.D. thesis, University of Greifswald, Germany. Available at http://ub-ed.ub.uni-greifswald.de/opus/volltexte/2006/312/pdf/Truong_thesis_20.9.06.pdf.
  21. Ulyanova V, Vershinina V, Ilinskaya O. 2011. Barnase and binase: twins with distinct fates. FEBS J. 278: 3633-3643.
    Pubmed CrossRef
  22. Ulyanova V, Vershinina V, Ilinskaya O, Harwood CR. 2015. Binase-like guanyl-preferring ribonucleases are new members of Bacillus PhoP regulon. Microbiol. Res. 170: 131-138.
    Pubmed CrossRef
  23. Voigt B, Hoi LT, Jürgen B, Albrecht D, Ehrenreich A, Veith B, et al. 2007. The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7: 413-423.
    Pubmed CrossRef
  24. Waschkau B, Waldeck J, Wieland S, Eichstadt R, Meinhardt F. 2008. Generation of readily transformable Bacillus licheniformis mutants. Appl. Microbiol. Biotechnol. 78: 181-188.
    Pubmed CrossRef
  25. Wetzstein M, Völker U, Dedio J, Lobau S, Zuber U, Schiesswohl M, et al. 1992. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J. Bacteriol. 174: 3300-3310.
    Pubmed PMC CrossRef
  26. Yon J, Fried M. 1989. Precise gene fusion by PCR. Nucleic Acids Res. 17: 4895.
    Pubmed PMC CrossRef
  27. Znamenskaya LV, Gabdrakhmanova LA, Chernokalskaya EB, Leshchinskaya IB, Hartley RW. 1995. Phosphate regulation of biosynthesis of extracellular RNases of endospore-forming bacteria. FEBS Lett. 357: 16-18.
    CrossRef
  28. Znamenskaya LV, Vershinina OA, Vershinina VI, Leshchinskaya IB, Hartley RW. 1999. Expression of the genes for guanylspecific ribonucleases from Bacillus intermedius and Bacillus pumilus is regulated by the two-component signal-transduction system PhoP–PhoR in B. subtilis. FEMS Microbiol. Lett. 173:217-222.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2016; 26(8): 1464-1472

Published online August 28, 2016 https://doi.org/10.4014/jmb.1601.01087

Copyright © The Korean Society for Microbiology and Biotechnology.

A Phosphate Starvation-Inducible Ribonuclease of Bacillus licheniformis

Thanh Trung Nguyen 1, Minh Hung Nguyen 1, Huy Thuan Nguyen 1, Hoang Anh Nguyen 2, Thi Hoi Le 3, Thomas Schweder 4 and Britta Jürgen 4*

1Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam, 2Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi, Vietnam, 3Clinical Laboratory, National Hospital of Tropical Diseases, Hanoi, Vietnam, 4Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University, 17489 Greifswald, Germany

Received: January 29, 2016; Accepted: May 9, 2016

Abstract

The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant
extracellular proteins under phosphate starvation conditions. In this study, the function of this
phosphate starvation inducible protein was determined. An amino-acid sequence analysis of
the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of
Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032. The
comparison of the control strain and a BLi03719-deficient strain revealed a strongly reduced
extracellular ribonuclease activity of the mutant. Furthermore, this knockout mutant exhibited
delayed growth with yeast RNA as an alternative phosphate and carbon source. These results
suggest that BLi03719 is an extracellular ribonuclease expressed in B. licheniformis under
phosphate starvation conditions. Finally, a BLi03719 mutant showed an advantageous effect
on the overexpression of the heterologous amyE gene under phosphate-limited growth
conditions.

Keywords: Bacillus licheniformis, Barnase, Binase, Phosphate starvation, Ribonuclease

References

  1. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, et al. 2010. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol. Rev. 34: 883-923.
    Pubmed CrossRef
  2. Bailey JM, Biely P, Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23:257-270.
    CrossRef
  3. Chen M, Nagarajan V. 1993. The roles of signal peptide and mature protein in RNase (barnase) export from Bacillus subtilis. Mol. Gen. Genet. 239: 409-415.
    Pubmed CrossRef
  4. Deutscher MP. 2015. How bacterial cells keep ribonucleases under control. FEMS Microbiol. Rev. 39: 350-361.
    Pubmed KoreaMed CrossRef
  5. Hahnen E, Znamenskaya L, Koczan D, Leshchinskaya I, Hobom G. 2000. A novel secreted ribonuclease from Bacillus intermedius: gene structure and regulatory control. Mol. Gen. Genet. 263: 571-580.
    Pubmed CrossRef
  6. Härtl B, Wehrl W, Wiegert T, Homuth G, Schumann W. 2001. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J. Bacteriol. 183: 2696-2699.
    Pubmed KoreaMed CrossRef
  7. Hartley RW. 1988. Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202: 913-915.
    CrossRef
  8. Hartley RW. 1989. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem. Sci. 14: 450-454.
    CrossRef
  9. Hartley RW, Barker EA. 1972. Amino-acid sequence of extracellular ribonuclease (barnase) of Bacillus amyloliquefaciens. Nat. New Biol. 235: 15-16.
    Pubmed CrossRef
  10. Hoffmann K, Wollherr A, Larsen M, Rachinger M, Liesegang H, Ehrenreich A, Meinhardt F. 2010. Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl. Environ. Microbiol. 76: 5046-5057.
    Pubmed KoreaMed CrossRef
  11. Hoi LT, Voigt B, Jürgen B, Ehrenreich A, Gottschalk G, Evers S, et al. 2006. The phosphate-starvation response of Bacillus licheniformis. Proteomics 6: 3582-3601.
    Pubmed CrossRef
  12. Jeong MY, Lee ER, Yun CW, Cho SG, Choi YJ. 2006. Posttranscriptional regulation of the xynA expression by a novel mRNA binding protein, XaiF. Biochem. Biophys. Res. Commun. 351: 153-158.
    Pubmed CrossRef
  13. Jürgen B, Barken KB, Tobisch S, Pioch D, Wumpelmann M, Hecker M, Schweder T. 2005. Application of an electric DNA-chip for the expression analysis of bioprocess-relevant marker genes of Bacillus subtilis. Biotechnol. Bioeng. 92: 299-307.
    Pubmed CrossRef
  14. Mossakowska DE, Nyberg K, Fersht AR. 1989. Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (Barnase) and investigation of key residues in catalysis by site-directed mutagenesis. Biochemistry 28: 3843-3850.
    Pubmed CrossRef
  15. Nijland R, Hall MJ, Burgess JG. 2010. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5: e15668.
    Pubmed KoreaMed CrossRef
  16. Paddon CJ, Hartley RW. 1986. Cloning, sequencing and transcription of an inactivated copy of Bacillus amyloliquefaciens extracellular ribonuclease (barnase). Gene 40: 231-239.
    CrossRef
  17. Schulga AA, Nurkiyanova KM, Zakharyev VM, Kirpichnikov MP, Skryabin KG. 1992. Cloning of the gene encoding RNase binase from Bacillus intermedius 7P. Nucleic Acids Res. 20: 2375.
    Pubmed KoreaMed CrossRef
  18. Sharipova MR, Lopukhov LV, Vershinina OA, Leshchinskaya IB. 2005. Some secretion characteristics of bacterial ribonucleases. Microbiology 74: 27-31.
    CrossRef
  19. Stülke J, Hillen W. 2000. Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849-880.
    Pubmed CrossRef
  20. Truong LV. 2006. Characterization of the pectinolytic enzymes of the marine psychrophilic bacterium Pseudoalteromonas haloplanktis strain ANT/505. Ph.D. thesis, University of Greifswald, Germany. Available at http://ub-ed.ub.uni-greifswald.de/opus/volltexte/2006/312/pdf/Truong_thesis_20.9.06.pdf.
  21. Ulyanova V, Vershinina V, Ilinskaya O. 2011. Barnase and binase: twins with distinct fates. FEBS J. 278: 3633-3643.
    Pubmed CrossRef
  22. Ulyanova V, Vershinina V, Ilinskaya O, Harwood CR. 2015. Binase-like guanyl-preferring ribonucleases are new members of Bacillus PhoP regulon. Microbiol. Res. 170: 131-138.
    Pubmed CrossRef
  23. Voigt B, Hoi LT, Jürgen B, Albrecht D, Ehrenreich A, Veith B, et al. 2007. The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7: 413-423.
    Pubmed CrossRef
  24. Waschkau B, Waldeck J, Wieland S, Eichstadt R, Meinhardt F. 2008. Generation of readily transformable Bacillus licheniformis mutants. Appl. Microbiol. Biotechnol. 78: 181-188.
    Pubmed CrossRef
  25. Wetzstein M, Völker U, Dedio J, Lobau S, Zuber U, Schiesswohl M, et al. 1992. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J. Bacteriol. 174: 3300-3310.
    Pubmed KoreaMed CrossRef
  26. Yon J, Fried M. 1989. Precise gene fusion by PCR. Nucleic Acids Res. 17: 4895.
    Pubmed KoreaMed CrossRef
  27. Znamenskaya LV, Gabdrakhmanova LA, Chernokalskaya EB, Leshchinskaya IB, Hartley RW. 1995. Phosphate regulation of biosynthesis of extracellular RNases of endospore-forming bacteria. FEBS Lett. 357: 16-18.
    CrossRef
  28. Znamenskaya LV, Vershinina OA, Vershinina VI, Leshchinskaya IB, Hartley RW. 1999. Expression of the genes for guanylspecific ribonucleases from Bacillus intermedius and Bacillus pumilus is regulated by the two-component signal-transduction system PhoP–PhoR in B. subtilis. FEMS Microbiol. Lett. 173:217-222.
    Pubmed CrossRef