전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review

References

  1. Arya R, Sabir JSM, Bora RS, Saini KS. 2015. Optimization of culture parameters and novel strategies to improve protein solubility. In Insoluble Proteins: Methods and Protocols. Methods in Molecular Biology series, edited by Dr. Elena Garcia Fruitos, Vol. 1258, Chapter 3. Pages 45-63; Springer Science and Business Media, New York, USA.
    CrossRef
  2. Betiku E. 2006. Molecular chaperones involved in heterologous protein folding in Escherichia coli. Biotechnol. Mol. Biol. 1: 66-75.
  3. Brinkman U, Mattes RE, Buckel P. 1989. High-level expression of recombinant genes in Escherichia coli i s dependent on the availability of the dnaY gene product. Gene 85: 109-114.
    CrossRef
  4. Calderone TL, Stevens RD, Oas TG. 1996. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J. Mol. Biol. 262:407-412.
    Pubmed CrossRef
  5. Carrio MM, Villaverde A. 2003. Role of molecular chaperones in inclusion body formation. FEBS Lett. 537: 215-221.
    CrossRef
  6. Chen R. 2012. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30: 1102-1107.
    Pubmed CrossRef
  7. Choi JH, Lee SY. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64: 625-635.
    Pubmed CrossRef
  8. Cuccui J, Wren B. 2015. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins. J. Pharm. Pharmacol. 67: 338-350.
    Pubmed PMC CrossRef
  9. Cui SS, Lin XZ, Shen JH. 2011. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr. Purif. 77: 166-172.
    Pubmed CrossRef
  10. de Marco A. 2007. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat. Protoc. 2: 2632-2639.
    Pubmed CrossRef
  11. De Smit MH, van Duin, J. 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. USA 87: 7668-7672.
    Pubmed PMC CrossRef
  12. Dieci G, Bottarelli L, Ballabeni A, Ottonello S. 2000. tRNA assisted overproduction of eukaryotic ribosomal proteins. Protein Expr. Purif. 18: 346-354.
    Pubmed CrossRef
  13. El-Baky NA, Redwan EM. 2015. Therapeutic alpha-interferons protein: structure, production, and biosimilar. Prep. Biochem. Biotechnol. 45: 109-127.
    Pubmed CrossRef
  14. Etchegaray JP, Inouye M. 1999. Translational enhancement by an element example of molecular misreading in Alzheimer’s disease. Trends Neurosci. 21: 331-335.
  15. Fahnert B, Lilie H, Neubauer P. 2004. Inclusion bodies:formation and utilization. Adv. Biochem. Eng. Biotechnol. 89:93-142.
    Pubmed CrossRef
  16. Feng Y, Xu Q, Yang T, Sun E, Li J, Shi D, Wu D. 2014. A novel self-cleavage system for production of soluble recombinant protein in Escherichia coli. Protein Expr. Purif. 99: 64-69.
    Pubmed CrossRef
  17. Ferrer-Miralles N, Villaverde A. 2013. Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb. Cell Fact. 12: 113.
    Pubmed PMC CrossRef
  18. Fisher AC, Haitjema CH, Guarino C, Celik E, Endicott CE,Reading CA, et al. 2011. Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl. Environ. Microbiol. 77: 871-881.
    Pubmed PMC CrossRef
  19. Folwarczna J, Moravec T, Plchova H, Hoffmeisterova H, Cerovska N. 2012. Efficient expression of human papillomavirus 16 E7 oncoprotein fused to C-terminus of tobacco mosaic virus (TMV) coat protein using molecular chaperones in Escherichia coli. Protein Expr. Purif. 85: 152-157.
    Pubmed CrossRef
  20. Guzzo J. 2012. Biotechnical applications of small heat shock proteins from bacteria. Int. J. Biochem. Cell Biol. 44: 1698-1705.
    Pubmed CrossRef
  21. Ihss en J , Kowarik M, D ilettos o S, T anner C, W acker M , Thöny-Meyer L. 2010. Production of glycoprotein vaccines in Escherichia coli. Microb. Cell Fact. 11: 9: 61.
  22. Iost I, Dreyfus M. 1994. mRNAs can be stabilized by DEADbox proteins. Nature 372: 193-196.
    Pubmed CrossRef
  23. Iost I, Bizebard T, Dreyfus M. 2013. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. Biochim. Biophys. Acta 1829: 866-877.
    Pubmed CrossRef
  24. Jensen EB, Carlsen S. 1990. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate and salts. Biotechnol. Bioeng. 36: 1-11.
    Pubmed CrossRef
  25. Jenkins N. 2007. Modifications of therapeutic proteins:challenges and prospects. Cytotechnology 53: 121-125.
    Pubmed PMC CrossRef
  26. Jeong W, Shin HC. 1998. Supply of the ArgU gene product allows high-level expression of recombinant human interferonalpha2a in Escherichia coli. Biotechnol. Lett. 20: 19-22.
    CrossRef
  27. Jhamb K, Sahoo DK. 2012. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour. Technol. 123: 135-143.
    Pubmed CrossRef
  28. Joly JC, Leung WS, Swartz JR. 1998. Overexpression of Escherichia coli oxidoreductases increases recombinant insulinlike growth factor-I accumulation. Proc. Natl. Acad. Sci. USA 95: 2773-2777.
    Pubmed PMC CrossRef
  29. Jung ST, Kang TH, Kelton W, Georgiou G. 2011. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr. Opin. Biotechnol. 22:858-867.
    Pubmed CrossRef
  30. Kane JF, Violand BN, Curran DF, Staten NR, Duffin KL, Bogosian G. 1992. Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucleic Acids Res. 20: 6707-6712.
    Pubmed PMC CrossRef
  31. Kane JF. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 494-500.
    CrossRef
  32. Khattar SK, Kundu PK, Gulati P, Singh V, Bughani U, Bajpaim M, Saini KS 2007. Optimization and enhanced soluble production of biologically active recombinant human p38 mitogen-activated-protein kinase (MAPK) in Escherichia coli. Protein Peptide Lett. 14: 756-760.
    Pubmed CrossRef
  33. Kim R, Sandler SJ, Goldman S, Yokota H, Clark AJ, Kim SH. 1998. Overexpression of archaeal proteins in Escherichia coli. Biotechnol. Lett. 20: 207-210.
    CrossRef
  34. Kolaj O, S pada S , Robin S, W all JG. 2009. U s e of f olding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell Fact. 8: 9.
    Pubmed PMC CrossRef
  35. Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU. 2005. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69: 101-123.
    Pubmed PMC CrossRef
  36. Lebendiker M, Danieli T. 2014. Production of prone-toaggregate proteins. FEBS Lett. 588: 236-246.
    Pubmed CrossRef
  37. Lee YJ, Lee DH, Jeong KJ. 2014. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli. Appl. Microbiol. Biotechnol. 98: 1237-1246.
    Pubmed CrossRef
  38. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G. 2001. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23: 338-347.
    Pubmed CrossRef
  39. Linder P, Daugeron M-C. 2000. Are DEAD-box proteins becoming respectable helicases? Nat. Struct. Biol. 7: 97-99.
    Pubmed CrossRef
  40. Maeng BH, Nam DH, Kim YH. 2011. Coexpression of molecular chaperones to enhance functional expression of anti-BNPscFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide. World J. Microbiol. Biotechnol. 27: 1391-1398.
    Pubmed CrossRef
  41. Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538.
    Pubmed PMC
  42. Mavrangelos C, Thiel M, Adamson PJ, Millard DJ, Nobbs S, Zola H , Nichols on IC. 2 001. I ncreas ed y ield a nd a ctivity of soluble single-chain antibody fragments by combining highlevel expression and the Skp periplasmic chaperonin. Protein Expr. Purif. 23: 289-295.
    Pubmed CrossRef
  43. McNulty DE, Claffee BA, Huddleston MJ, Kane JF. 2003. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr. Purif. 27: 365-374.
    CrossRef
  44. Merritt JH, Ollis AA, Fisher AC, DeLisa MP. 2013. Glycansbydesign: engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnol. Bioeng. 110: 1550-1564.
    Pubmed CrossRef
  45. Mohammed Y, El-Baky NA, Redwan NA, Redwan EM. 2012. Expression of human interferon-α8 synthetic gene under P(BAD) promoter. Biochemistry (Mosc.) 77: 1210-1219.
    Pubmed CrossRef
  46. Mohammed Y, El-Bakym NA, Redwan EM. 2012. Expression, purification, and characterization of recombinant human consensus interferon-alpha in Escherichia coli under λP(L) promoter. Prep. Biochem. Biotechnol. 42: 426-447.
    Pubmed CrossRef
  47. Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H. 2013. Recombinant production of human interleukin 6 in Escherichia coli. PLoS One 8: e54933.
    Pubmed PMC CrossRef
  48. Nelson AL, Reichert JM. 2009. Development trends for therapeutic antibody fragments. Nat. Biotechnol. 27: 331-337.
    Pubmed CrossRef
  49. Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF. 1987. Stabilization of translationally active mRNA byprokaryotic REP sequences. Cell 48: 297-310.
    CrossRef
  50. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T. 1998. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699.
    Pubmed PMC
  51. Ollis AA, Zhang S, Fisher AC, DeLisa MP. 2014. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat. Chem. Biol. 10: 816-822.
    Pubmed PMC CrossRef
  52. Overton TW. 2014 Recombinant protein production in bacterial hosts. Drug Discov. Today 19: 590-601.
    Pubmed CrossRef
  53. Ow DSW, Lim DYX, Nissom PM, Camattari A, Wong VVT. 2010. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb. Cell Fact. 9: 22.
    Pubmed PMC CrossRef
  54. Papaneophytou CP, Kontopidis G. 2014. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr. Purif. 94: 22-32.
    Pubmed CrossRef
  55. Park YS, Seo SW, Hwang S, Chu HS, Ahn JH, Kim TW, et al. 2007. Design of 5’-untranslated region variants for tunable expression in Escherichia coli. Biochem. Biophys. Res. Commun. 356: 136-141.
    Pubmed CrossRef
  56. Parker J. 1989. Errors and alternatives in reading the universal genetics code. Microbiol. Rev. 53: 273-298.
    Pubmed PMC
  57. Poole ES, Brown CM, Tate WP. 1995. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 14: 151-158.
    Pubmed PMC
  58. Reilly DE, Yansura DG. 2010. Production of monoclonal antibodies in E. coli, pp295-308. In Shire SJ, Gombotz W, Bechtold-Peters K, Andya J. (eds). Current Trends in Monoclonal Antibodies Development and Manufacturing. Springer, New York.
    CrossRef
  59. Redwan EM. 2006. Optimal gene sequence for optimal protein expression in Escherichia coli: principle requirements. Arab. J. Biotechnol. 11: 493-510.
  60. Redwan EM. 2007. Cumulative updating of approved biopharmaceuticals. Hum. Antibodies 16: 137-158.
  61. Redwan EM, Matar SM, El-Aziz GA, Serour EA. 2008. Synthesis of the human insulin gene: protein expression, scaling up and bioactivity. Prep. Biochem. Biotechnol. 38: 24-39.
    Pubmed CrossRef
  62. Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L. 1992. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6: 1219-1229.
    Pubmed CrossRef
  63. Rodriguez V, Asenjo JA, Andrews BA. 2014. Design and implementation of a high yield production system for recombinant expression of peptides. Microb. Cell Fact. 13: 65.
    Pubmed PMC CrossRef
  64. Ronez F, Arbault P, Guzzo J. 2012. Co-expression of the small heat shock protein, Lo18, with β-glucosidase in Escherichia coli improves solubilization and reveals various associations with overproduced heterologous protein, GroEL/ES. Biotechnol. Lett. 34: 935-939.
    Pubmed CrossRef
  65. Sahdev S, Khattar SK, Saini KS. 2008. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol. Cell. Biochem. 307: 249-264.
    Pubmed CrossRef
  66. Sanchez JC, Padron G, Santana H, Herrera L. 1998. Elimination of an HuIFN alpha 2b readthrough species, produced in Escherichia coli, by replacing its natural translation stop signal. J. Biotechnol. 63: 179-186.
    CrossRef
  67. Seetharam R, Heeren RA, Wong EY, Braford SR, Klein BK, Aykent S, et al. 1988. Mistranslation in IGF-1 during overexpression of the protein in Escherichia coli using a synthetic gene containing low frequency codons. Biochem. Biophys. Res. Commun. 155: 518-523.
    CrossRef
  68. Seo SW, Yang JS, Cho HS, Yang J, Kim SC, Park JM, et al. 2014. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci. Rep. 4: 4515.
    Pubmed PMC CrossRef
  69. Sørensen HP, Laursen BS, Mortensen KK, Sperling-Petersen HU. 2002. Bacterial translation initiation — mechanism and regulation. Recent Res. Dev. Biophys. Biochem. 2: 243-270.
  70. Sørensen HP, Sperling-Petersen HU, Mortensen KK. 2003. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr. Purif. 32: 252-259.
    Pubmed CrossRef
  71. Sørensen HP, Sperling-Petersen HU, Mortensen KK. 2003. Dialysis strategies for protein refolding: preparative streptavidin production. Protein Expr. Purif. 31: 149-154.
    CrossRef
  72. Sorensen HP, Mortensen KK. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Fact. 4: 1.
    Pubmed PMC CrossRef
  73. Sprengart ML, Porter AG. 1997. Functional importance of RNA interactions in selection of translation initiation codons. Mol. Microbiol. 24: 19-28.
    Pubmed CrossRef
  74. Stenstrom C, Jin H, Major L, Tate W, Isaksson LA. 2001. Codon bias at the 3’-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 263: 273-284.
    CrossRef
  75. Tegel H, Tourle S, Ottosson J, Persson A. 2010. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expr. Purif. 69: 159-167.
    Pubmed CrossRef
  76. Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW. 2012. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 61: 919-926.
    Pubmed CrossRef
  77. Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, et al. 2012. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol. 8: 434-436.
    Pubmed PMC CrossRef
  78. Valente CA, Prazeres DMF, Cabral JMS, Monteriro GA. 2004. Translation feature of human alpha 2b interferon production in Escherichia coli. Appl. Environ. Microbiol. 70:5033-5036.
    Pubmed PMC CrossRef
  79. Vasina JA, Baneyx F. 1997. Expression of aggregation prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoters systems.Protein Expr. Purif. 9: 211-218.
    Pubmed CrossRef
  80. Voulgaridou GP, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A. 2013. Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. Plos One 8: e56582.
    Pubmed PMC CrossRef
  81. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al. 2002. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298: 1790-1793.
    Pubmed CrossRef
  82. Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24: 1241-1252.
    Pubmed CrossRef
  83. Wetter M, Kowarik M, Steffen M, Carranza P, Corradin G, Wacker M. 2013. Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component. Glycoconj. J. 30: 511-522.
    Pubmed CrossRef
  84. Yan X , Hu S , Guan Y X, Y ao S J. 2 012. C oexpres sion of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferongamma in Escherichia coli. Appl. Microbiol. Biotechnol. 93:1065-1074.
    Pubmed CrossRef
  85. Yarian C, Marszalek M, Sochacka E, Malkiewicz A, Guenther R, Miskiewicz A, Agris PF. 2000. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species. Biochemistry 39: 1339013395.
    CrossRef
  86. Yim S, Jeong K, Chang H, Lee S. 2001. High-level secretory production of human granulocytes-colony stimulating factor by fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst. Eng. 24: 249-254.
    CrossRef

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2015; 25(7): 953-962

Published online July 28, 2015 https://doi.org/10.4014/jmb.1412.12079

Copyright © The Korean Society for Microbiology and Biotechnology.

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

Mohammed N. Baeshen 1, Ahmed M. Al-Hejin 1, Roop S. Bora 1, 2, Mohamed M. M. Ahmed 1, 3*, Hassan A. I. Ramadan 1, 4, Kulvinder S. Saini 1, 2, Nabih A. Baeshen 1 and Elrashdy M. Redwan 1, 5

1Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, 2Department of Biotechnology, Eternal University, Baru Sahib-173 101, Himachal Pradesh, India, 3Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, Alexandria 21934, Egypt, 4Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki-Cairo 12311, Egypt, 5Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Applied Technology, New Borg AL-Arab, Alexandria 21934, Egypt

Received: December 30, 2014; Accepted: February 13, 2015

Abstract

Escherichia coli is the most preferred microorganism to express heterologous proteins for
therapeutic use, as around 30% of the approved therapeutic proteins are currently being
produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness,
and easy scale-up process, E. coli is an expression host of choice in the
biotechnology industry for large-scale production of proteins, particularly non-glycosylated
proteins, for therapeutic use. The availability of various E. coli expression vectors and strains,
relatively easy protein folding mechanisms, and bioprocess technologies, makes it very
attractive for industrial applications. However, the codon usage in E. coli and the absence of
post-translational modifications, such as glycosylation, phosphorylation, and proteolytic
processing, limit its use for the production of slightly complex recombinant biopharmaceuticals.
Several new technological advancements in the E. coli expression system to meet the
biotechnology industry requirements have been made, such as novel engineered strains,
genetically modifying E. coli to possess capability to glycosylate heterologous proteins and
express complex proteins, including full-length glycosylated antibodies. This review summarizes
the recent advancements that may further expand the use of the E. coli expression system to
produce more complex and also glycosylated proteins for therapeutic use in the future.

Keywords: E. coli, Optimized protein production, Biopharmaceuticals, Codon usage, Molecular chaperones

References

  1. Arya R, Sabir JSM, Bora RS, Saini KS. 2015. Optimization of culture parameters and novel strategies to improve protein solubility. In Insoluble Proteins: Methods and Protocols. Methods in Molecular Biology series, edited by Dr. Elena Garcia Fruitos, Vol. 1258, Chapter 3. Pages 45-63; Springer Science and Business Media, New York, USA.
    CrossRef
  2. Betiku E. 2006. Molecular chaperones involved in heterologous protein folding in Escherichia coli. Biotechnol. Mol. Biol. 1: 66-75.
  3. Brinkman U, Mattes RE, Buckel P. 1989. High-level expression of recombinant genes in Escherichia coli i s dependent on the availability of the dnaY gene product. Gene 85: 109-114.
    CrossRef
  4. Calderone TL, Stevens RD, Oas TG. 1996. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J. Mol. Biol. 262:407-412.
    Pubmed CrossRef
  5. Carrio MM, Villaverde A. 2003. Role of molecular chaperones in inclusion body formation. FEBS Lett. 537: 215-221.
    CrossRef
  6. Chen R. 2012. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30: 1102-1107.
    Pubmed CrossRef
  7. Choi JH, Lee SY. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64: 625-635.
    Pubmed CrossRef
  8. Cuccui J, Wren B. 2015. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins. J. Pharm. Pharmacol. 67: 338-350.
    Pubmed KoreaMed CrossRef
  9. Cui SS, Lin XZ, Shen JH. 2011. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr. Purif. 77: 166-172.
    Pubmed CrossRef
  10. de Marco A. 2007. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat. Protoc. 2: 2632-2639.
    Pubmed CrossRef
  11. De Smit MH, van Duin, J. 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. USA 87: 7668-7672.
    Pubmed KoreaMed CrossRef
  12. Dieci G, Bottarelli L, Ballabeni A, Ottonello S. 2000. tRNA assisted overproduction of eukaryotic ribosomal proteins. Protein Expr. Purif. 18: 346-354.
    Pubmed CrossRef
  13. El-Baky NA, Redwan EM. 2015. Therapeutic alpha-interferons protein: structure, production, and biosimilar. Prep. Biochem. Biotechnol. 45: 109-127.
    Pubmed CrossRef
  14. Etchegaray JP, Inouye M. 1999. Translational enhancement by an element example of molecular misreading in Alzheimer’s disease. Trends Neurosci. 21: 331-335.
  15. Fahnert B, Lilie H, Neubauer P. 2004. Inclusion bodies:formation and utilization. Adv. Biochem. Eng. Biotechnol. 89:93-142.
    Pubmed CrossRef
  16. Feng Y, Xu Q, Yang T, Sun E, Li J, Shi D, Wu D. 2014. A novel self-cleavage system for production of soluble recombinant protein in Escherichia coli. Protein Expr. Purif. 99: 64-69.
    Pubmed CrossRef
  17. Ferrer-Miralles N, Villaverde A. 2013. Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb. Cell Fact. 12: 113.
    Pubmed KoreaMed CrossRef
  18. Fisher AC, Haitjema CH, Guarino C, Celik E, Endicott CE,Reading CA, et al. 2011. Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl. Environ. Microbiol. 77: 871-881.
    Pubmed KoreaMed CrossRef
  19. Folwarczna J, Moravec T, Plchova H, Hoffmeisterova H, Cerovska N. 2012. Efficient expression of human papillomavirus 16 E7 oncoprotein fused to C-terminus of tobacco mosaic virus (TMV) coat protein using molecular chaperones in Escherichia coli. Protein Expr. Purif. 85: 152-157.
    Pubmed CrossRef
  20. Guzzo J. 2012. Biotechnical applications of small heat shock proteins from bacteria. Int. J. Biochem. Cell Biol. 44: 1698-1705.
    Pubmed CrossRef
  21. Ihss en J , Kowarik M, D ilettos o S, T anner C, W acker M , Thöny-Meyer L. 2010. Production of glycoprotein vaccines in Escherichia coli. Microb. Cell Fact. 11: 9: 61.
  22. Iost I, Dreyfus M. 1994. mRNAs can be stabilized by DEADbox proteins. Nature 372: 193-196.
    Pubmed CrossRef
  23. Iost I, Bizebard T, Dreyfus M. 2013. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. Biochim. Biophys. Acta 1829: 866-877.
    Pubmed CrossRef
  24. Jensen EB, Carlsen S. 1990. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate and salts. Biotechnol. Bioeng. 36: 1-11.
    Pubmed CrossRef
  25. Jenkins N. 2007. Modifications of therapeutic proteins:challenges and prospects. Cytotechnology 53: 121-125.
    Pubmed KoreaMed CrossRef
  26. Jeong W, Shin HC. 1998. Supply of the ArgU gene product allows high-level expression of recombinant human interferonalpha2a in Escherichia coli. Biotechnol. Lett. 20: 19-22.
    CrossRef
  27. Jhamb K, Sahoo DK. 2012. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour. Technol. 123: 135-143.
    Pubmed CrossRef
  28. Joly JC, Leung WS, Swartz JR. 1998. Overexpression of Escherichia coli oxidoreductases increases recombinant insulinlike growth factor-I accumulation. Proc. Natl. Acad. Sci. USA 95: 2773-2777.
    Pubmed KoreaMed CrossRef
  29. Jung ST, Kang TH, Kelton W, Georgiou G. 2011. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr. Opin. Biotechnol. 22:858-867.
    Pubmed CrossRef
  30. Kane JF, Violand BN, Curran DF, Staten NR, Duffin KL, Bogosian G. 1992. Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucleic Acids Res. 20: 6707-6712.
    Pubmed KoreaMed CrossRef
  31. Kane JF. 1995. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 494-500.
    CrossRef
  32. Khattar SK, Kundu PK, Gulati P, Singh V, Bughani U, Bajpaim M, Saini KS 2007. Optimization and enhanced soluble production of biologically active recombinant human p38 mitogen-activated-protein kinase (MAPK) in Escherichia coli. Protein Peptide Lett. 14: 756-760.
    Pubmed CrossRef
  33. Kim R, Sandler SJ, Goldman S, Yokota H, Clark AJ, Kim SH. 1998. Overexpression of archaeal proteins in Escherichia coli. Biotechnol. Lett. 20: 207-210.
    CrossRef
  34. Kolaj O, S pada S , Robin S, W all JG. 2009. U s e of f olding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell Fact. 8: 9.
    Pubmed KoreaMed CrossRef
  35. Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU. 2005. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69: 101-123.
    Pubmed KoreaMed CrossRef
  36. Lebendiker M, Danieli T. 2014. Production of prone-toaggregate proteins. FEBS Lett. 588: 236-246.
    Pubmed CrossRef
  37. Lee YJ, Lee DH, Jeong KJ. 2014. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli. Appl. Microbiol. Biotechnol. 98: 1237-1246.
    Pubmed CrossRef
  38. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G. 2001. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23: 338-347.
    Pubmed CrossRef
  39. Linder P, Daugeron M-C. 2000. Are DEAD-box proteins becoming respectable helicases? Nat. Struct. Biol. 7: 97-99.
    Pubmed CrossRef
  40. Maeng BH, Nam DH, Kim YH. 2011. Coexpression of molecular chaperones to enhance functional expression of anti-BNPscFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide. World J. Microbiol. Biotechnol. 27: 1391-1398.
    Pubmed CrossRef
  41. Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538.
    Pubmed KoreaMed
  42. Mavrangelos C, Thiel M, Adamson PJ, Millard DJ, Nobbs S, Zola H , Nichols on IC. 2 001. I ncreas ed y ield a nd a ctivity of soluble single-chain antibody fragments by combining highlevel expression and the Skp periplasmic chaperonin. Protein Expr. Purif. 23: 289-295.
    Pubmed CrossRef
  43. McNulty DE, Claffee BA, Huddleston MJ, Kane JF. 2003. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr. Purif. 27: 365-374.
    CrossRef
  44. Merritt JH, Ollis AA, Fisher AC, DeLisa MP. 2013. Glycansbydesign: engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnol. Bioeng. 110: 1550-1564.
    Pubmed CrossRef
  45. Mohammed Y, El-Baky NA, Redwan NA, Redwan EM. 2012. Expression of human interferon-α8 synthetic gene under P(BAD) promoter. Biochemistry (Mosc.) 77: 1210-1219.
    Pubmed CrossRef
  46. Mohammed Y, El-Bakym NA, Redwan EM. 2012. Expression, purification, and characterization of recombinant human consensus interferon-alpha in Escherichia coli under λP(L) promoter. Prep. Biochem. Biotechnol. 42: 426-447.
    Pubmed CrossRef
  47. Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H. 2013. Recombinant production of human interleukin 6 in Escherichia coli. PLoS One 8: e54933.
    Pubmed KoreaMed CrossRef
  48. Nelson AL, Reichert JM. 2009. Development trends for therapeutic antibody fragments. Nat. Biotechnol. 27: 331-337.
    Pubmed CrossRef
  49. Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF. 1987. Stabilization of translationally active mRNA byprokaryotic REP sequences. Cell 48: 297-310.
    CrossRef
  50. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T. 1998. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699.
    Pubmed KoreaMed
  51. Ollis AA, Zhang S, Fisher AC, DeLisa MP. 2014. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat. Chem. Biol. 10: 816-822.
    Pubmed KoreaMed CrossRef
  52. Overton TW. 2014 Recombinant protein production in bacterial hosts. Drug Discov. Today 19: 590-601.
    Pubmed CrossRef
  53. Ow DSW, Lim DYX, Nissom PM, Camattari A, Wong VVT. 2010. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb. Cell Fact. 9: 22.
    Pubmed KoreaMed CrossRef
  54. Papaneophytou CP, Kontopidis G. 2014. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr. Purif. 94: 22-32.
    Pubmed CrossRef
  55. Park YS, Seo SW, Hwang S, Chu HS, Ahn JH, Kim TW, et al. 2007. Design of 5’-untranslated region variants for tunable expression in Escherichia coli. Biochem. Biophys. Res. Commun. 356: 136-141.
    Pubmed CrossRef
  56. Parker J. 1989. Errors and alternatives in reading the universal genetics code. Microbiol. Rev. 53: 273-298.
    Pubmed KoreaMed
  57. Poole ES, Brown CM, Tate WP. 1995. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 14: 151-158.
    Pubmed KoreaMed
  58. Reilly DE, Yansura DG. 2010. Production of monoclonal antibodies in E. coli, pp295-308. In Shire SJ, Gombotz W, Bechtold-Peters K, Andya J. (eds). Current Trends in Monoclonal Antibodies Development and Manufacturing. Springer, New York.
    CrossRef
  59. Redwan EM. 2006. Optimal gene sequence for optimal protein expression in Escherichia coli: principle requirements. Arab. J. Biotechnol. 11: 493-510.
  60. Redwan EM. 2007. Cumulative updating of approved biopharmaceuticals. Hum. Antibodies 16: 137-158.
  61. Redwan EM, Matar SM, El-Aziz GA, Serour EA. 2008. Synthesis of the human insulin gene: protein expression, scaling up and bioactivity. Prep. Biochem. Biotechnol. 38: 24-39.
    Pubmed CrossRef
  62. Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L. 1992. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6: 1219-1229.
    Pubmed CrossRef
  63. Rodriguez V, Asenjo JA, Andrews BA. 2014. Design and implementation of a high yield production system for recombinant expression of peptides. Microb. Cell Fact. 13: 65.
    Pubmed KoreaMed CrossRef
  64. Ronez F, Arbault P, Guzzo J. 2012. Co-expression of the small heat shock protein, Lo18, with β-glucosidase in Escherichia coli improves solubilization and reveals various associations with overproduced heterologous protein, GroEL/ES. Biotechnol. Lett. 34: 935-939.
    Pubmed CrossRef
  65. Sahdev S, Khattar SK, Saini KS. 2008. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol. Cell. Biochem. 307: 249-264.
    Pubmed CrossRef
  66. Sanchez JC, Padron G, Santana H, Herrera L. 1998. Elimination of an HuIFN alpha 2b readthrough species, produced in Escherichia coli, by replacing its natural translation stop signal. J. Biotechnol. 63: 179-186.
    CrossRef
  67. Seetharam R, Heeren RA, Wong EY, Braford SR, Klein BK, Aykent S, et al. 1988. Mistranslation in IGF-1 during overexpression of the protein in Escherichia coli using a synthetic gene containing low frequency codons. Biochem. Biophys. Res. Commun. 155: 518-523.
    CrossRef
  68. Seo SW, Yang JS, Cho HS, Yang J, Kim SC, Park JM, et al. 2014. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci. Rep. 4: 4515.
    Pubmed KoreaMed CrossRef
  69. Sørensen HP, Laursen BS, Mortensen KK, Sperling-Petersen HU. 2002. Bacterial translation initiation — mechanism and regulation. Recent Res. Dev. Biophys. Biochem. 2: 243-270.
  70. Sørensen HP, Sperling-Petersen HU, Mortensen KK. 2003. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr. Purif. 32: 252-259.
    Pubmed CrossRef
  71. Sørensen HP, Sperling-Petersen HU, Mortensen KK. 2003. Dialysis strategies for protein refolding: preparative streptavidin production. Protein Expr. Purif. 31: 149-154.
    CrossRef
  72. Sorensen HP, Mortensen KK. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Fact. 4: 1.
    Pubmed KoreaMed CrossRef
  73. Sprengart ML, Porter AG. 1997. Functional importance of RNA interactions in selection of translation initiation codons. Mol. Microbiol. 24: 19-28.
    Pubmed CrossRef
  74. Stenstrom C, Jin H, Major L, Tate W, Isaksson LA. 2001. Codon bias at the 3’-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 263: 273-284.
    CrossRef
  75. Tegel H, Tourle S, Ottosson J, Persson A. 2010. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expr. Purif. 69: 159-167.
    Pubmed CrossRef
  76. Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW. 2012. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 61: 919-926.
    Pubmed CrossRef
  77. Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, et al. 2012. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol. 8: 434-436.
    Pubmed KoreaMed CrossRef
  78. Valente CA, Prazeres DMF, Cabral JMS, Monteriro GA. 2004. Translation feature of human alpha 2b interferon production in Escherichia coli. Appl. Environ. Microbiol. 70:5033-5036.
    Pubmed KoreaMed CrossRef
  79. Vasina JA, Baneyx F. 1997. Expression of aggregation prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoters systems.Protein Expr. Purif. 9: 211-218.
    Pubmed CrossRef
  80. Voulgaridou GP, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A. 2013. Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. Plos One 8: e56582.
    Pubmed KoreaMed CrossRef
  81. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al. 2002. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298: 1790-1793.
    Pubmed CrossRef
  82. Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24: 1241-1252.
    Pubmed CrossRef
  83. Wetter M, Kowarik M, Steffen M, Carranza P, Corradin G, Wacker M. 2013. Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component. Glycoconj. J. 30: 511-522.
    Pubmed CrossRef
  84. Yan X , Hu S , Guan Y X, Y ao S J. 2 012. C oexpres sion of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferongamma in Escherichia coli. Appl. Microbiol. Biotechnol. 93:1065-1074.
    Pubmed CrossRef
  85. Yarian C, Marszalek M, Sochacka E, Malkiewicz A, Guenther R, Miskiewicz A, Agris PF. 2000. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species. Biochemistry 39: 1339013395.
    CrossRef
  86. Yim S, Jeong K, Chang H, Lee S. 2001. High-level secretory production of human granulocytes-colony stimulating factor by fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst. Eng. 24: 249-254.
    CrossRef