전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, B oonchird C, K aneko Y , Harashim a S. 2 009. G enom ewide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J. Appl. Genet. 50: 301-310.
    Pubmed CrossRef
  2. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649.
    Pubmed CrossRef
  3. Blomberg A, Adler L. 1992. Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 33: 145.
    CrossRef
  4. Boubekeur S, Bunoust O, Camougrand N, Castroviejo M, Rigoulet M, Guerin B. 1999. A mitochondrial pyruvate dehydrogenase bypass in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274: 21044-21048.
    Pubmed CrossRef
  5. Bukau B, Weissman J, Horwich A. 2006. Molecular chaperones and protein quality control. Cell 125: 443-451.
    Pubmed CrossRef
  6. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, et al. 2004. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333.
    Pubmed CrossRef
  7. Chang Q, Griest TA, Harter TM, Petrash JM. 2007. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. BBA Mol. Cell Res. 1773: 321-329.
    CrossRef
  8. Chang Q, Petrash JM. 2008. Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. BBA Mol. Cell Res. 1783: 237-245.
    CrossRef
  9. Cohen R, Holland JP, Yokoi T, Holland MJ. 1986. Identification of a regulatory region that mediates glucosedependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol. Cell. Biol. 6: 2287-2297.
    Pubmed PMC CrossRef
  10. Compagno C, Boschi F, Ranzi BM. 1996. Glycerol production in a triose phosphate isomerase-deficient mutant of Saccharomyces cerevisiae. Biotechnol. Progr. 12: 591-595.
    Pubmed CrossRef
  11. Cossins EA. 1980. One-carbon metabolism, pp. 365-418. The Biochemistry of Plants, Vol II. Academic Press, New York.
  12. Craig EA, Kramer J, Kosic-Smithers J. 1987. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84: 4156-4160.
    Pubmed PMC CrossRef
  13. De Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18: 1413-1428.
    Pubmed CrossRef
  14. Dickson RC, Sumanasekera C, Lester RL. 2006. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45: 447-465.
    Pubmed CrossRef
  15. Dihazi H, Asif AR, Agarwal NK, Doncheva Y, Müller GA. 2005. Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle’s loop (TALH) cells. Mol. Cell. Proteomics 4: 1445-1458.
    Pubmed CrossRef
  16. Dragosits M, Stadlmann J, Graf A, Gasser B, Maurer M, Sauer M, et al. 2010. The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics 11: 207.
    Pubmed PMC CrossRef
  17. Ellis EM. 2002. Microbial aldo-keto reductases. FEMS Microbiol. Lett. 216: 123-131.
    Pubmed CrossRef
  18. Fazius F, Shelest E, Gebhardt P, Brock M. 2012. The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol. Microbiol. 86: 1508-1530.
    Pubmed PMC CrossRef
  19. Garay-Arroyo A, Covarrubias AA. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892.
    CrossRef
  20. Hernandez R, Nombela C, Diez-Orejas R, Gil C. 2004. Twodimensional reference map of Candida albicans hyphal forms. Proteomics 4: 374-382.
    Pubmed CrossRef
  21. Hilt W, Wolf DH. 1992. Stress-induced proteolysis in yeast. Mol. Microbiol. 6: 2437-2442.22. Hirasawa T, Yamada K, Nagahisa K, Dinh TN, Furusawa C, Katakura Y, et al. 2009. Proteomic analysis of responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae. Process. Biochem. 44: 647-653.
  22. Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372.
    Pubmed PMC CrossRef
  23. Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, de Virville JD, Remy R, des Francs-Small CC. 1998. Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol. 116: 627-635.
    Pubmed PMC CrossRef
  24. Jin Z, Mu Y-W, Sun J-Y, Li X-M, Gao X-L, Lu J. 2012. Proteome analysis of metabolic proteins (pI 4-7) in barley (Hordeum vulgare) malts and initial application in malt quality discrimination. J. Agric. Food Chem. 61: 402-409.
    Pubmed CrossRef
  25. Kim HJ, Lee H-R, Kim CS, Jin Y-S, Seo J-H. 2013. Investigation of protein expression profiles of erythritolproducing Candida magnoliae in response to glucose perturbation. Enzyme Microb. Technol. 53: 174-180.
    Pubmed CrossRef
  26. Kim SI, Choi HK, Kim JH, Lee HS, Hong SS. 2001. Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme Microb. Technol. 28: 202-209.
    CrossRef
  27. Krantz M, Nordlander B, Valadi H, Johansson M, Gustafsson L, Hohmann S. 2004. Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot. Cell 3: 1381-1390.
    Pubmed PMC CrossRef
  28. Lahav R, Nejidat A, Abeliovich A. 2004. Alterations in protein synthesis and levels of heat shock 70 proteins in response to salt stress of the halotolerant yeast Rhodotorula mucilaginosa. Antonie Van Leeuwenhoek 85: 259-269.
    Pubmed CrossRef
  29. Larsson C, Gustafsson L. 1987. Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch. Microbiol. 147: 358-363.
    Pubmed CrossRef
  30. Li Z, Li Z. 2012. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. BBA Rev. Cancer 1826: 13-22.
    CrossRef
  31. Mager WH, de Boer AH, Siderius MH, Voss H-P. 2000. Cellular responses to oxidative and osmotic stress. Cell Stress Chaperones 5: 73.
    CrossRef
  32. Mann M, Jensen ON. 2003. Proteomic analysis of posttranslational modifications. Nat. Biotechnol. 21: 255-261.
    Pubmed CrossRef
  33. Mansour S, Bailly J, Delettre J, Bonnarme P. 2009. A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica. Proteomics 9: 4714-4725.
    Pubmed CrossRef
  34. Masselot M, de Robichon-Szulmajster H. 1975. Methionine biosynthesis in Saccharomyces cerevisiae. Mol. Gen. Genet. 139:121-132.
    Pubmed CrossRef
  35. Miyagi H, Kawai S, Murata K. 2009. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 284: 7553-7560.
    Pubmed PMC CrossRef
  36. Moon HJ, Jeya M, Kim IW, Lee JK. 2010. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 86: 1017-1025.
    Pubmed CrossRef
  37. Morano KA, Grant CM, Moye-Rowley WS. 2012. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190: 1157-1195.
    Pubmed PMC CrossRef
  38. Morin M, Monteoliva L, Insenser M, Gil C, Dominguez A. 2007. Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica. J. Mass Spectrom. 42: 1453-1462.
    Pubmed CrossRef
  39. Moriyama T, Garcia-Perez A, Burg M. 1989. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J. Biol. Chem. 264: 16810-16814.
    Pubmed
  40. Norregaard Jensen O. 2004. Modification-specific proteomics:characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8: 33-41.
    Pubmed CrossRef
  41. Nicolet CM, Craig EA. 1989. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 3638-3646.
    Pubmed PMC CrossRef
  42. Norbeck J, Blomberg A. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl - Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272: 5544-5554.
    Pubmed CrossRef
  43. Perez-Torrado R, Bruno-Barcena JM, Matallana E. 2005. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl. Environ. Microbiol. 71: 6831-6837.
    Pubmed PMC CrossRef
  44. Rep M , Krantz M , Thevelein J M, H ohm ann S. 2 000. T he transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathwaydependent genes. J. Biol. Chem. 275: 8290-8300.
    Pubmed CrossRef
  45. Rose MD, Misra LM, Vogel JP. 1989. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57: 1211-1221.
    CrossRef
  46. Rymowicz W, Rywinska A, Marcinkiewicz M. 2009. Highyield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol. Lett. 31: 377-380.
    Pubmed CrossRef
  47. Rywinska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Tomaszewska L, Rymowicz W. 2013. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenerg. 48: 148-166.
    CrossRef
  48. Sawada K, Taki A, Yamakawa T, Seki M. 2009. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. J. Biosci. Bioeng. 108: 385-390.
    Pubmed CrossRef
  49. Schneider R, Brors B, Burger F, Camrath S, Weiss H. 1997. Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae. Curr. Genet. 32:384-388.
    Pubmed CrossRef
  50. Teichert U, Mechler B, Müller H, Wolf D. 1989. Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J. Biol. Chem. 264: 16037-16045.
    Pubmed
  51. Tomaszewska L, Rywinska A, Gladkowski W. 2012. Production of erythritol and mannitol by Yarrowia lipolyticayeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 39: 1333-1343.
    Pubmed PMC CrossRef
  52. Varela J, Praekelt UM, Meacock PA, Planta RJ, Mager WH. 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15: 6232-6245.
    Pubmed PMC CrossRef
  53. Weber A, Kogl SA, Jung K. 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J. Bacteriol. 188: 7165-7175.
    Pubmed PMC CrossRef
  54. Wong C-M, Siu K-L, Jin D-Y. 2004. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279: 23207-23213.
    Pubmed CrossRef
  55. Wucherpfennig T, Hestler T, Krull R. 2011. Morphology engineering - osmolality and its effect on Aspergillus niger morphology and productivity. Microb. Cell Fact. 10: 58.
    Pubmed PMC CrossRef
  56. Xu S, Zhou J, Liu L, Chen J. 2011. Arginine: a novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochem. 46: 1230-1235.
    CrossRef
  57. Yan S, Tang Z, Su W, Sun W. 2005. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5: 235-244.
    Pubmed CrossRef
  58. Yancey PH. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208: 2819-2830.
    Pubmed CrossRef
  59. Yang L-B, Zhan X-B, Zheng Z-Y, Wu J-R, Gao M-J, Lin C-C. 2014. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour. Technol. 151: 120-127.
    Pubmed CrossRef
  60. Zhang X, Lester RL, Dickson RC. 2004. Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J. Biol. Chem. 279: 22030-22038.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2015; 25(7): 1056-1069

Published online July 28, 2015 https://doi.org/10.4014/jmb.1412.12026

Copyright © The Korean Society for Microbiology and Biotechnology.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

Li-Bo Yang 1, Xiao-Meng Dai 1, Zhi-Yong Zheng 1, Li Zhu 2, Xiao-Bei Zhan 1* and Chi-Chung Lin 1

1Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China, 2Jiangsu Rayguang Biotechnology Co., Ltd., Wuxi, Jiangsu 214125, P.R. China

Received: December 10, 2014; Accepted: March 1, 2015

Abstract

Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein
expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to
identify differentially-expressed proteins in response to osmotic pressure. In order to analyze
intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed
to separate and visualize the differential expression of the intracellular proteins extracted from
Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures.
Proteomic analyses allowed identification of 54 differentially-expressed proteins among the
proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the
osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of
energy, metabolism, cell rescue, and stress response. The expression of such enzymes related
to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of
Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high
osmotic stress was due to the significant induction of a range of crucial enzymes related to
polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic
stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols
biosynthesis was really related to an osmotic response and a protection mechanism against
hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce
other cell stress responses as with heat shock and oxidation stress responses, and these
responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had
drastically increased expression levels under hyperosmotic pressure.

Keywords: Yarrowia lipolytica, Osmotic stress response, Proteomics, Erythritol

References

  1. Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, B oonchird C, K aneko Y , Harashim a S. 2 009. G enom ewide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J. Appl. Genet. 50: 301-310.
    Pubmed CrossRef
  2. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649.
    Pubmed CrossRef
  3. Blomberg A, Adler L. 1992. Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 33: 145.
    CrossRef
  4. Boubekeur S, Bunoust O, Camougrand N, Castroviejo M, Rigoulet M, Guerin B. 1999. A mitochondrial pyruvate dehydrogenase bypass in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274: 21044-21048.
    Pubmed CrossRef
  5. Bukau B, Weissman J, Horwich A. 2006. Molecular chaperones and protein quality control. Cell 125: 443-451.
    Pubmed CrossRef
  6. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, et al. 2004. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333.
    Pubmed CrossRef
  7. Chang Q, Griest TA, Harter TM, Petrash JM. 2007. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. BBA Mol. Cell Res. 1773: 321-329.
    CrossRef
  8. Chang Q, Petrash JM. 2008. Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. BBA Mol. Cell Res. 1783: 237-245.
    CrossRef
  9. Cohen R, Holland JP, Yokoi T, Holland MJ. 1986. Identification of a regulatory region that mediates glucosedependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol. Cell. Biol. 6: 2287-2297.
    Pubmed KoreaMed CrossRef
  10. Compagno C, Boschi F, Ranzi BM. 1996. Glycerol production in a triose phosphate isomerase-deficient mutant of Saccharomyces cerevisiae. Biotechnol. Progr. 12: 591-595.
    Pubmed CrossRef
  11. Cossins EA. 1980. One-carbon metabolism, pp. 365-418. The Biochemistry of Plants, Vol II. Academic Press, New York.
  12. Craig EA, Kramer J, Kosic-Smithers J. 1987. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84: 4156-4160.
    Pubmed KoreaMed CrossRef
  13. De Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18: 1413-1428.
    Pubmed CrossRef
  14. Dickson RC, Sumanasekera C, Lester RL. 2006. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45: 447-465.
    Pubmed CrossRef
  15. Dihazi H, Asif AR, Agarwal NK, Doncheva Y, Müller GA. 2005. Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle’s loop (TALH) cells. Mol. Cell. Proteomics 4: 1445-1458.
    Pubmed CrossRef
  16. Dragosits M, Stadlmann J, Graf A, Gasser B, Maurer M, Sauer M, et al. 2010. The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics 11: 207.
    Pubmed KoreaMed CrossRef
  17. Ellis EM. 2002. Microbial aldo-keto reductases. FEMS Microbiol. Lett. 216: 123-131.
    Pubmed CrossRef
  18. Fazius F, Shelest E, Gebhardt P, Brock M. 2012. The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol. Microbiol. 86: 1508-1530.
    Pubmed KoreaMed CrossRef
  19. Garay-Arroyo A, Covarrubias AA. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892.
    CrossRef
  20. Hernandez R, Nombela C, Diez-Orejas R, Gil C. 2004. Twodimensional reference map of Candida albicans hyphal forms. Proteomics 4: 374-382.
    Pubmed CrossRef
  21. Hilt W, Wolf DH. 1992. Stress-induced proteolysis in yeast. Mol. Microbiol. 6: 2437-2442.22. Hirasawa T, Yamada K, Nagahisa K, Dinh TN, Furusawa C, Katakura Y, et al. 2009. Proteomic analysis of responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae. Process. Biochem. 44: 647-653.
  22. Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372.
    Pubmed KoreaMed CrossRef
  23. Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, de Virville JD, Remy R, des Francs-Small CC. 1998. Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol. 116: 627-635.
    Pubmed KoreaMed CrossRef
  24. Jin Z, Mu Y-W, Sun J-Y, Li X-M, Gao X-L, Lu J. 2012. Proteome analysis of metabolic proteins (pI 4-7) in barley (Hordeum vulgare) malts and initial application in malt quality discrimination. J. Agric. Food Chem. 61: 402-409.
    Pubmed CrossRef
  25. Kim HJ, Lee H-R, Kim CS, Jin Y-S, Seo J-H. 2013. Investigation of protein expression profiles of erythritolproducing Candida magnoliae in response to glucose perturbation. Enzyme Microb. Technol. 53: 174-180.
    Pubmed CrossRef
  26. Kim SI, Choi HK, Kim JH, Lee HS, Hong SS. 2001. Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme Microb. Technol. 28: 202-209.
    CrossRef
  27. Krantz M, Nordlander B, Valadi H, Johansson M, Gustafsson L, Hohmann S. 2004. Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot. Cell 3: 1381-1390.
    Pubmed KoreaMed CrossRef
  28. Lahav R, Nejidat A, Abeliovich A. 2004. Alterations in protein synthesis and levels of heat shock 70 proteins in response to salt stress of the halotolerant yeast Rhodotorula mucilaginosa. Antonie Van Leeuwenhoek 85: 259-269.
    Pubmed CrossRef
  29. Larsson C, Gustafsson L. 1987. Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch. Microbiol. 147: 358-363.
    Pubmed CrossRef
  30. Li Z, Li Z. 2012. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. BBA Rev. Cancer 1826: 13-22.
    CrossRef
  31. Mager WH, de Boer AH, Siderius MH, Voss H-P. 2000. Cellular responses to oxidative and osmotic stress. Cell Stress Chaperones 5: 73.
    CrossRef
  32. Mann M, Jensen ON. 2003. Proteomic analysis of posttranslational modifications. Nat. Biotechnol. 21: 255-261.
    Pubmed CrossRef
  33. Mansour S, Bailly J, Delettre J, Bonnarme P. 2009. A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica. Proteomics 9: 4714-4725.
    Pubmed CrossRef
  34. Masselot M, de Robichon-Szulmajster H. 1975. Methionine biosynthesis in Saccharomyces cerevisiae. Mol. Gen. Genet. 139:121-132.
    Pubmed CrossRef
  35. Miyagi H, Kawai S, Murata K. 2009. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 284: 7553-7560.
    Pubmed KoreaMed CrossRef
  36. Moon HJ, Jeya M, Kim IW, Lee JK. 2010. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 86: 1017-1025.
    Pubmed CrossRef
  37. Morano KA, Grant CM, Moye-Rowley WS. 2012. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190: 1157-1195.
    Pubmed KoreaMed CrossRef
  38. Morin M, Monteoliva L, Insenser M, Gil C, Dominguez A. 2007. Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica. J. Mass Spectrom. 42: 1453-1462.
    Pubmed CrossRef
  39. Moriyama T, Garcia-Perez A, Burg M. 1989. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J. Biol. Chem. 264: 16810-16814.
    Pubmed
  40. Norregaard Jensen O. 2004. Modification-specific proteomics:characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8: 33-41.
    Pubmed CrossRef
  41. Nicolet CM, Craig EA. 1989. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 3638-3646.
    Pubmed KoreaMed CrossRef
  42. Norbeck J, Blomberg A. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl - Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272: 5544-5554.
    Pubmed CrossRef
  43. Perez-Torrado R, Bruno-Barcena JM, Matallana E. 2005. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl. Environ. Microbiol. 71: 6831-6837.
    Pubmed KoreaMed CrossRef
  44. Rep M , Krantz M , Thevelein J M, H ohm ann S. 2 000. T he transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathwaydependent genes. J. Biol. Chem. 275: 8290-8300.
    Pubmed CrossRef
  45. Rose MD, Misra LM, Vogel JP. 1989. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57: 1211-1221.
    CrossRef
  46. Rymowicz W, Rywinska A, Marcinkiewicz M. 2009. Highyield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol. Lett. 31: 377-380.
    Pubmed CrossRef
  47. Rywinska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Tomaszewska L, Rymowicz W. 2013. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenerg. 48: 148-166.
    CrossRef
  48. Sawada K, Taki A, Yamakawa T, Seki M. 2009. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. J. Biosci. Bioeng. 108: 385-390.
    Pubmed CrossRef
  49. Schneider R, Brors B, Burger F, Camrath S, Weiss H. 1997. Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae. Curr. Genet. 32:384-388.
    Pubmed CrossRef
  50. Teichert U, Mechler B, Müller H, Wolf D. 1989. Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J. Biol. Chem. 264: 16037-16045.
    Pubmed
  51. Tomaszewska L, Rywinska A, Gladkowski W. 2012. Production of erythritol and mannitol by Yarrowia lipolyticayeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 39: 1333-1343.
    Pubmed KoreaMed CrossRef
  52. Varela J, Praekelt UM, Meacock PA, Planta RJ, Mager WH. 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15: 6232-6245.
    Pubmed KoreaMed CrossRef
  53. Weber A, Kogl SA, Jung K. 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J. Bacteriol. 188: 7165-7175.
    Pubmed KoreaMed CrossRef
  54. Wong C-M, Siu K-L, Jin D-Y. 2004. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279: 23207-23213.
    Pubmed CrossRef
  55. Wucherpfennig T, Hestler T, Krull R. 2011. Morphology engineering - osmolality and its effect on Aspergillus niger morphology and productivity. Microb. Cell Fact. 10: 58.
    Pubmed KoreaMed CrossRef
  56. Xu S, Zhou J, Liu L, Chen J. 2011. Arginine: a novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochem. 46: 1230-1235.
    CrossRef
  57. Yan S, Tang Z, Su W, Sun W. 2005. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5: 235-244.
    Pubmed CrossRef
  58. Yancey PH. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208: 2819-2830.
    Pubmed CrossRef
  59. Yang L-B, Zhan X-B, Zheng Z-Y, Wu J-R, Gao M-J, Lin C-C. 2014. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour. Technol. 151: 120-127.
    Pubmed CrossRef
  60. Zhang X, Lester RL, Dickson RC. 2004. Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J. Biol. Chem. 279: 22030-22038.
    Pubmed CrossRef