전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. Barabote RD, Xie G, Brettin TS, Hinrichs SH, Fey PD, Jay JJ, et al. 2009. Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. PLoS One 4: e7041.
    Pubmed PMC CrossRef
  2. Bilik K, Strzetelski J, Furgal-Dierzuk I, Sliwinski B. 2014. Effect of supplementing TMR diets with artificial saliva and acid buf on optimizing ruminal pH and fermentation activity in cows. Ann. Anim. Sci. 14: 585-593.
    CrossRef
  3. Böhm K, Herter T, Müller JJ, Borriss R, Heinemann U. 2010. Crystal structure of Klebsiella sp. ASR1 phytase suggests substrate binding to a preformed active site that meets the requirements of a plant rhizosphere enzyme. FEBS J. 277:1284-1296.
    Pubmed CrossRef
  4. Ding Q, Yang P, Huang H, Wang Y, Yao B. 2010. Development status and research trends of phytases. J. Agric. Sci. Technol. 12: 27-33.
  5. Dono ND, Sparks NH, Olukosi OA. 2014. Association between digesta pH, body weight, and nutrient utilization in chickens of different body weights and at different ages. J. Poult. Sci. 51: 180-184.
  6. Em anuelsson O, B runak S, v on H eijne G, N ielsen H . 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953-971.
  7. Fu D, Huang H, Meng K, Wang Y, Luo H, Yang P, et al. 2009. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol. Bioeng. 103:857-864.
    Pubmed CrossRef
  8. Golovan S, Wang G, Zhang J, Forsberg CW. 2000. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can. J. Microbiol. 46:59-71.
    Pubmed CrossRef
  9. Greiner R, da Silva LG, Couri S. 2009. Purification and characterization of an extracellular phytase from Aspergillus niger 11T53A9. Braz. J. Microbiol. 40: 795-807.
    Pubmed PMC CrossRef
  10. Hanson BT, Yagi JM, Jeon CO, Madsen EM. 2012. Role of nitrogen fixation in the autecology of Polaromonas naphthalenivorans in contaminated sediments. Environ. Microbiol. 14: 1544-1557.
    Pubmed CrossRef
  11. Kostrewa D, Wyss M, D’Arcy A, Van Loon APGM. 1999. Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 Å resolution. J. Mol. Biol. 288: 965-974.
    Pubmed CrossRef
  12. Lei X-G, Porres JM. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25: 1787-1794.
    Pubmed CrossRef
  13. Lei X-G, Weaver JD, Mullaney EJ, Ullah AH, Azain MJ. 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci. 1: 283-309.
    Pubmed CrossRef
  14. Liao Y, Li C-M, Chen H, Wu Q, Shan Z, Han X-Y. 2013. Site-directed mutagenesis improves the thermostability and catalytic efficiency of Aspergillus niger N25 phytase mutated by I44E and T252R. Appl. Biochem. Biotechnol. 171: 900-915.
    Pubmed CrossRef
  15. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. 2008. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36:D534-D538.
    Pubmed PMC CrossRef
  16. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271-2278.
    Pubmed CrossRef
  17. Moesseler A, Kottendorf S, Liesner VG, Kamphues J. 2010. Impact of diets’ physical form (particle size; meal/pelleted) on the stomach content (dry matter content, pH, chloride concentration) of pigs. Livestock Sci. 134: 146-148.
    CrossRef
  18. Moesseler A, Wintermann M, Sander SJ, Kamphues J. 2012. Effect of diet grinding and pelleting fed either dry or liquid feed on dry matter and pH in the stomach of pigs and the development of gastric ulcers. J. Anim. Sci. 90: 343-345.
    Pubmed CrossRef
  19. Mohammed R, Hunerberg M, McAllister TA, Beauchemin KA. 2014. Characterization of ruminal temperature and its relationship with ruminal pH in beef heifers fed growing and finishing diets. J. Anim. Sci. 92: 4650-4660.
    Pubmed CrossRef
  20. Mukhametzyanova AD, Akhmetova AI, Sharipova MR. 2012. Microorganisms as phytase producers. Microbiology 81:267-275.
    CrossRef
  21. Mullaney EJ, Ullah AH. 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 312: 179-184.
    Pubmed CrossRef
  22. Olukosi OA, Dono ND. 2014. Modification of digesta pH and intestinal morphology with the use of benzoic acid or phytobiotics and the effects on broiler chicken growth performance and energy and nutrient utilization. J. Anim. Sci. 92: 3945-3953.
    Pubmed CrossRef
  23. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.
    Pubmed CrossRef
  24. Qadis AQ, Goya S, Ikuta K, Yatsu M, Kimura A, Nakanishi S, Sato S. 2014. Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. J. Vet. Med. Sci. 76: 877-885.
    Pubmed PMC CrossRef
  25. Reddy NR, Sathe SK, Salunkhe DK. 1982. Phytates in legumes and cereals. Adv. Food Res. 28: 1-92.
    CrossRef
  26. Shivange AV, Dennig A, Schwaneberg U. 2014. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J. Biotechnol. 170: 68-72.
    Pubmed CrossRef
  27. Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U. 2012. Directed evolution of a highly active Yersinia mollaretii phytase. Appl. Microbiol. Biotechnol. 95: 405-418.
    Pubmed CrossRef
  28. Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, et al. 2002. Engineering of phytase for improved activity at low pH. Appl. Environ. Microbiol. 68: 1907-1913.
    Pubmed PMC CrossRef
  29. Ullah AH, Cummins BJ. 1987. Purification, N-terminal amino acid sequence and characterization of the pH 2.5 optimum acid phosphatase (E.C. 3.1.3.2) from Aspergillus ficuum. Prep. Biochem. 17: 397-422.
    Pubmed CrossRef
  30. Vats P, Banerjee UC. 2005. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J. Ind. Microbiol. Biotechnol. 32: 141-147.
    Pubmed CrossRef
  31. Wyss M, Pasamontes L, Remy R, Kohler J, Kusznir E, Gadient M, et al. 1998. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64: 4446-4451.
    Pubmed PMC
  32. Yao MZ, Wang X, Wang W, Fu YJ, Liang AH. 2013. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol. Lett. 35:1669-1676.
    Pubmed CrossRef
  33. Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH. 2012. Phytases: crystal structures, protein engineering and potential biotechnological applications. J. Appl. Microbiol. 112: 1-14.
    Pubmed CrossRef
  34. Zhang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX, Tong JM. 2010. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour. Technol. 101: 4125-4134.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2015; 25(6): 930-935

Published online June 28, 2015 https://doi.org/10.4014/jmb.1411.11012

Copyright © The Korean Society for Microbiology and Biotechnology.

Cloning, Overexpression, and Characterization of a Metagenome-Derived Phytase with Optimal Activity at Low pH

Hao Tan 1, 2, Xiang Wu 1, 2, Liyuan Xie 1, 2, Zhongqian Huang 1, 2, Bingcheng Gan 1, 2 and Weihong Peng 1, 2*

1Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R. China, 2R&D Department, JINDI Agricultural Biotechnology Inc., Chengdu, P.R. China

Received: November 7, 2014; Accepted: January 8, 2015

Abstract

A phytase gene was identified in a publicly available metagenome derived from subsurface
groundwater, which was deduced to encode for a protein of the histidine acid phosphatase
(HAP) family. The nucleotide sequence of the phytase gene was chemically synthesized and
cloned, in order to further overexpress the phytase in Escherichia coli. Purified protein of the
recombinant phytase demonstrated an activity for phytic acid of 298 ± 17 μmol P/min/mg, at
the pH optimum of 2.0 with the temperature of 37°C. Interestingly, the pH optimum of this
phytase is much lower in comparison with most HAP phytases known to date. It suggests that
the phytase could possess improved adaptability to the low pH condition caused by the
gastric acid in livestock and poultry stomachs.

Keywords: phytic acid, phytase, metagenome, pH-optimum, acidophilic

References

  1. Barabote RD, Xie G, Brettin TS, Hinrichs SH, Fey PD, Jay JJ, et al. 2009. Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. PLoS One 4: e7041.
    Pubmed KoreaMed CrossRef
  2. Bilik K, Strzetelski J, Furgal-Dierzuk I, Sliwinski B. 2014. Effect of supplementing TMR diets with artificial saliva and acid buf on optimizing ruminal pH and fermentation activity in cows. Ann. Anim. Sci. 14: 585-593.
    CrossRef
  3. Böhm K, Herter T, Müller JJ, Borriss R, Heinemann U. 2010. Crystal structure of Klebsiella sp. ASR1 phytase suggests substrate binding to a preformed active site that meets the requirements of a plant rhizosphere enzyme. FEBS J. 277:1284-1296.
    Pubmed CrossRef
  4. Ding Q, Yang P, Huang H, Wang Y, Yao B. 2010. Development status and research trends of phytases. J. Agric. Sci. Technol. 12: 27-33.
  5. Dono ND, Sparks NH, Olukosi OA. 2014. Association between digesta pH, body weight, and nutrient utilization in chickens of different body weights and at different ages. J. Poult. Sci. 51: 180-184.
  6. Em anuelsson O, B runak S, v on H eijne G, N ielsen H . 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953-971.
  7. Fu D, Huang H, Meng K, Wang Y, Luo H, Yang P, et al. 2009. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol. Bioeng. 103:857-864.
    Pubmed CrossRef
  8. Golovan S, Wang G, Zhang J, Forsberg CW. 2000. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can. J. Microbiol. 46:59-71.
    Pubmed CrossRef
  9. Greiner R, da Silva LG, Couri S. 2009. Purification and characterization of an extracellular phytase from Aspergillus niger 11T53A9. Braz. J. Microbiol. 40: 795-807.
    Pubmed KoreaMed CrossRef
  10. Hanson BT, Yagi JM, Jeon CO, Madsen EM. 2012. Role of nitrogen fixation in the autecology of Polaromonas naphthalenivorans in contaminated sediments. Environ. Microbiol. 14: 1544-1557.
    Pubmed CrossRef
  11. Kostrewa D, Wyss M, D’Arcy A, Van Loon APGM. 1999. Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 Å resolution. J. Mol. Biol. 288: 965-974.
    Pubmed CrossRef
  12. Lei X-G, Porres JM. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25: 1787-1794.
    Pubmed CrossRef
  13. Lei X-G, Weaver JD, Mullaney EJ, Ullah AH, Azain MJ. 2013. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci. 1: 283-309.
    Pubmed CrossRef
  14. Liao Y, Li C-M, Chen H, Wu Q, Shan Z, Han X-Y. 2013. Site-directed mutagenesis improves the thermostability and catalytic efficiency of Aspergillus niger N25 phytase mutated by I44E and T252R. Appl. Biochem. Biotechnol. 171: 900-915.
    Pubmed CrossRef
  15. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. 2008. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36:D534-D538.
    Pubmed KoreaMed CrossRef
  16. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271-2278.
    Pubmed CrossRef
  17. Moesseler A, Kottendorf S, Liesner VG, Kamphues J. 2010. Impact of diets’ physical form (particle size; meal/pelleted) on the stomach content (dry matter content, pH, chloride concentration) of pigs. Livestock Sci. 134: 146-148.
    CrossRef
  18. Moesseler A, Wintermann M, Sander SJ, Kamphues J. 2012. Effect of diet grinding and pelleting fed either dry or liquid feed on dry matter and pH in the stomach of pigs and the development of gastric ulcers. J. Anim. Sci. 90: 343-345.
    Pubmed CrossRef
  19. Mohammed R, Hunerberg M, McAllister TA, Beauchemin KA. 2014. Characterization of ruminal temperature and its relationship with ruminal pH in beef heifers fed growing and finishing diets. J. Anim. Sci. 92: 4650-4660.
    Pubmed CrossRef
  20. Mukhametzyanova AD, Akhmetova AI, Sharipova MR. 2012. Microorganisms as phytase producers. Microbiology 81:267-275.
    CrossRef
  21. Mullaney EJ, Ullah AH. 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 312: 179-184.
    Pubmed CrossRef
  22. Olukosi OA, Dono ND. 2014. Modification of digesta pH and intestinal morphology with the use of benzoic acid or phytobiotics and the effects on broiler chicken growth performance and energy and nutrient utilization. J. Anim. Sci. 92: 3945-3953.
    Pubmed CrossRef
  23. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.
    Pubmed CrossRef
  24. Qadis AQ, Goya S, Ikuta K, Yatsu M, Kimura A, Nakanishi S, Sato S. 2014. Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. J. Vet. Med. Sci. 76: 877-885.
    Pubmed KoreaMed CrossRef
  25. Reddy NR, Sathe SK, Salunkhe DK. 1982. Phytates in legumes and cereals. Adv. Food Res. 28: 1-92.
    CrossRef
  26. Shivange AV, Dennig A, Schwaneberg U. 2014. Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J. Biotechnol. 170: 68-72.
    Pubmed CrossRef
  27. Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U. 2012. Directed evolution of a highly active Yersinia mollaretii phytase. Appl. Microbiol. Biotechnol. 95: 405-418.
    Pubmed CrossRef
  28. Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, et al. 2002. Engineering of phytase for improved activity at low pH. Appl. Environ. Microbiol. 68: 1907-1913.
    Pubmed KoreaMed CrossRef
  29. Ullah AH, Cummins BJ. 1987. Purification, N-terminal amino acid sequence and characterization of the pH 2.5 optimum acid phosphatase (E.C. 3.1.3.2) from Aspergillus ficuum. Prep. Biochem. 17: 397-422.
    Pubmed CrossRef
  30. Vats P, Banerjee UC. 2005. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J. Ind. Microbiol. Biotechnol. 32: 141-147.
    Pubmed CrossRef
  31. Wyss M, Pasamontes L, Remy R, Kohler J, Kusznir E, Gadient M, et al. 1998. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64: 4446-4451.
    Pubmed KoreaMed
  32. Yao MZ, Wang X, Wang W, Fu YJ, Liang AH. 2013. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol. Lett. 35:1669-1676.
    Pubmed CrossRef
  33. Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH. 2012. Phytases: crystal structures, protein engineering and potential biotechnological applications. J. Appl. Microbiol. 112: 1-14.
    Pubmed CrossRef
  34. Zhang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX, Tong JM. 2010. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour. Technol. 101: 4125-4134.
    Pubmed CrossRef