전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82:340-349.
    CrossRef
  2. AOAC. 1998. Offical Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, DC.
  3. Bellido C, Bolado S, Coca M, Lucas S, Gonzalez-Benito G, Garcia-Cubero MT. 2011. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour. Technol. 102: 10868-10874.
    Pubmed CrossRef
  4. Chandel AK, Kapoor RK, Singh A, Kuhad RC. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98: 1947-1950.
    Pubmed CrossRef
  5. De Jong W, Marcotullio G. 2010. Overview of biorefineries based on co-production of furfural, existing concepts and novel developments. Int. J. Chem. React. Eng. 8.
  6. Gonzalez-Siso MI, Freire-Picos MA, Ramil E, GonzalezDominguez M, Torres AR, Cerdan ME. 2000. Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. Enzyme Microb. Technol. 26: 699-705.
    CrossRef
  7. Huang CH, Xu TW, Zhang YP, Xue YH, Chen GW. 2007. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Membr. Sci. 288: 1-12.
    CrossRef
  8. Jang JS, Cho Y, Jeong GT, Kim SK. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18.
    Pubmed CrossRef
  9. Jang SS, Shirai Y, Uchida M, Wakisaka M. 2012. Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11: 1953-1963.
  10. Jeong TS, Kim YS, Oh KK. 2011. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresour. Technol. 102: 10529-10534.
    Pubmed CrossRef
  11. John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193.
    Pubmed CrossRef
  12. Jonsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6.
  13. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159.
    CrossRef
  14. Limtong S, Sringiew C, Yongmanitchai W. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374.
    Pubmed CrossRef
  15. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31: 345-352.
    Pubmed CrossRef
  16. Martin C, Jonsson LJ. 2003. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb. Technol. 32: 386-395.
    CrossRef
  17. Meinita MDN, Hong YK, Jeong GT. 2012. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. 35:123-128.
    Pubmed CrossRef
  18. Nahak S, Nahak G, Pradhan I, Sahu RK. 2011. Bioethanol from marine algae: a solution to global warming problem. J. Appl. Environ. Biol. Sci. 1: 74-80.
  19. Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S. 2008. Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J. Biosci. Bioeng. 106: 128-133.
    Pubmed CrossRef
  20. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.
    Pubmed CrossRef
  21. Quemener B, Lahaye M. 1998. Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques. J. Appl. Phycol. 10: 75-81.
    CrossRef
  22. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M. 2011. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. 90:1573-1586.
    Pubmed CrossRef
  23. Silva RO, dos Santos GMP, Nicolau LAD, Lucetti LT, Santana APM, Chaves LDS, et al. 2011. Sulfated-polysaccharide fraction from red algae Gracilaria caudata protects mice gut against ethanol-induced damage. Mar. Drugs 9: 2188-2200.
    Pubmed CrossRef
  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-51042618. National Renewable Energy Laboratory.
  25. Sun Y, Cheng JY. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.
    CrossRef
  26. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708.
    Pubmed CrossRef

Article

Research article

J. Microbiol. Biotechnol. 2014; 24(9): 1245-1253

Published online September 28, 2014 https://doi.org/10.4014/jmb.1402.02038

Copyright © The Korean Society for Microbiology and Biotechnology.

Sulfuric Acid Hydrolysis and Detoxification of Red Alga Pterocladiella capillacea for Bioethanol Fermentation with Thermotolerant Yeast Kluyveromyces marxianus

Chien-Hui Wu 1, Wei-Chen Chien 2, Han-Kai Chou 2, Jungwoo Yang 3 and Hong-Ting Victor Lin 2, 4*

1Department of Sea Food Science, National Kaohsiung Marine University, Nan-Tzu, Kaohsiung 81143, Taiwan, R.O.C. , 2Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan, R. O. C., 3School of Life Science & Biotechnology for BK21 Plus, Department of Biotechnology, Korea University, Seoul 136-713, Republic of Korea, 4Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, R. O. C.

Received: February 19, 2014; Accepted: May 23, 2014

Abstract

One-step sulfuric acid saccharification of the red alga Pterocladiella capillacea was optimized,
and various detoxification methods (neutralization, overliming, and electrodialysis) of the
acid hydrolysate were evaluated for fermentation with the thermotolerant yeast Kluyveromyces
marxianus. A proximate composition analysis indicated that P. capillacea was rich in
carbohydrates. A significant galactose recovery of 81.1 ± 5% was also achieved under the
conditions of a 12% (w/v) biomass load, 5% (v/v) sulfuric acid, 121°C, and hydrolysis for
30 min. Among the various detoxification methods, electrodialysis was identified as the most
suitable for fermentable sugar recovery and organic acid removal (100% reduction of formic
and levulinic acids), even though it failed to reduce the amount of the inhibitor 5-HMF. As a
result, K. marxianus fermentation with the electrodialyzed acid hydrolysate of P. capillacea
resulted in the best ethanol levels and fermentation efficiency.

Keywords: Kluyveromyces marxianus, Acid saccharification, Electrodialysis, Bioethanol, Fermentation, Pterocladiella capillacea

References

  1. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82:340-349.
    CrossRef
  2. AOAC. 1998. Offical Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, DC.
  3. Bellido C, Bolado S, Coca M, Lucas S, Gonzalez-Benito G, Garcia-Cubero MT. 2011. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour. Technol. 102: 10868-10874.
    Pubmed CrossRef
  4. Chandel AK, Kapoor RK, Singh A, Kuhad RC. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98: 1947-1950.
    Pubmed CrossRef
  5. De Jong W, Marcotullio G. 2010. Overview of biorefineries based on co-production of furfural, existing concepts and novel developments. Int. J. Chem. React. Eng. 8.
  6. Gonzalez-Siso MI, Freire-Picos MA, Ramil E, GonzalezDominguez M, Torres AR, Cerdan ME. 2000. Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. Enzyme Microb. Technol. 26: 699-705.
    CrossRef
  7. Huang CH, Xu TW, Zhang YP, Xue YH, Chen GW. 2007. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Membr. Sci. 288: 1-12.
    CrossRef
  8. Jang JS, Cho Y, Jeong GT, Kim SK. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18.
    Pubmed CrossRef
  9. Jang SS, Shirai Y, Uchida M, Wakisaka M. 2012. Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11: 1953-1963.
  10. Jeong TS, Kim YS, Oh KK. 2011. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresour. Technol. 102: 10529-10534.
    Pubmed CrossRef
  11. John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193.
    Pubmed CrossRef
  12. Jonsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6.
  13. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159.
    CrossRef
  14. Limtong S, Sringiew C, Yongmanitchai W. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374.
    Pubmed CrossRef
  15. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31: 345-352.
    Pubmed CrossRef
  16. Martin C, Jonsson LJ. 2003. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb. Technol. 32: 386-395.
    CrossRef
  17. Meinita MDN, Hong YK, Jeong GT. 2012. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. 35:123-128.
    Pubmed CrossRef
  18. Nahak S, Nahak G, Pradhan I, Sahu RK. 2011. Bioethanol from marine algae: a solution to global warming problem. J. Appl. Environ. Biol. Sci. 1: 74-80.
  19. Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S. 2008. Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J. Biosci. Bioeng. 106: 128-133.
    Pubmed CrossRef
  20. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.
    Pubmed CrossRef
  21. Quemener B, Lahaye M. 1998. Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques. J. Appl. Phycol. 10: 75-81.
    CrossRef
  22. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M. 2011. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. 90:1573-1586.
    Pubmed CrossRef
  23. Silva RO, dos Santos GMP, Nicolau LAD, Lucetti LT, Santana APM, Chaves LDS, et al. 2011. Sulfated-polysaccharide fraction from red algae Gracilaria caudata protects mice gut against ethanol-induced damage. Mar. Drugs 9: 2188-2200.
    Pubmed CrossRef
  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-51042618. National Renewable Energy Laboratory.
  25. Sun Y, Cheng JY. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.
    CrossRef
  26. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708.
    Pubmed CrossRef