Articles Service
Research article
Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides
1Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy, 2University of Copenhagen, Faculty of Science, Department of Food Science Rolighedsvej 30, 1958 Frederiksberg C, Denmark
J. Microbiol. Biotechnol. 2014; 24(2): 160-167
Published February 28, 2014 https://doi.org/10.4014/jmb.1310.10015
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
References
- Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R. 2009. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J. Pept. Sci. 15: 595-600.
- Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R. 2004. Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25: 2055-2061.
- Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238250.
- Burleigh BA, Caler EV, Webster P, Andrews NW. 1997. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J. Cell Biol. 136: 609-620.
- Caler EV, Vaena de Avalos S, Haynes PA, Andrews NW, Burleigh BA. 1998. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J. 17: 4975-4986.
- Coetzer TH, Goldring JP, Huson LE. 2008. Oligopeptidase B:a processing peptidase involved in pathogenesis. Biochimie 90: 336-344.
- Fulop V, Bocskei Z, Polgar L. 1998. Prolyl oligopeptidase:an unusual beta-propeller domain regulates proteolysis. Cell 94: 161-170.
- Guina T, Yi EC, Wang H, Hackett M, Miller SI. 2000. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alphahelical antimicrobial peptides. J. Bacteriol. 182: 4077-4086.
- Hemerly JP, Oliveira V, Del Nery E, Morty RE, Andrews NW, Juliano MA, Juliano L. 2003. Subsite specificity (S3, S2, S1’, S2’, and S3’) of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides:comparative study and identification of specific carboxypeptidase activity. Biochem. J. 373: 933-939.
- Kanatani A, Masuda T, Shimoda T, Misoka F, Lin XS, Yoshimoto T, Tsuru D. 1991. Protease II from Escherichia coli: sequencing and expression of the enzyme gene and characterization of the expressed enzyme. J. Biochem. (Tokyo) 110: 315-320.
- Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos Jr L. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperoneassisted protein folding. Biochemistry 40: 3016-3026.
- Marcos JF, Gandia M. 2009. Antimicrobial peptides: to membranes and beyond. Expert Opin. Drug Discov. 4: 659-671.
- Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M. 2007. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66: 151-163.
- McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC. 2010. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J. Biol. Chem. 285: 39249-39259.
- Morty RE, Authie E, Troeberg L, Lonsdale-Eccles JD, Coetzer TH. 1999. Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol. Biochem. Parasitol. 102: 145-155.
- Morty RE, Fulop V, Andrews NW. 2002. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 3329-3337.
- Morty RE, Lonsdale-Eccles JD, Morehead J, Caler EV, Mentele R, Auerswald EA, et al. 1999. Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J. Biol. Chem. 274: 2614926156.
- Morty RE, Pelle R, Vadasz I, Uzcanga GL, Seeger W, Bubis J. 2005. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem. 280: 1092510937.
- Morty RE, Troeberg L, Powers JC, Ono S, Lonsdale-Eccles JD, Coetzer TH. 2000. Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters. Biochem. Pharmacol. 60: 1497-1504.
- Nguyen LT, Haney EF, Vogel HJ. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29: 464-472.
- Peschel A, Sahl HG. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4: 529-536.
- Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760: 1732-1740.
- Polgar L. 1997. A potential processing enzyme in prokaryotes:oligopeptidase B, a new type of serine peptidase. Proteins 28: 375-379.
- Rawlings ND, Polgar L, Barrett AJ. 1991. A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem. J. 279: 907-908.
- Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L. 2002. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46: 157-168.
- Scocchi M, Tossi A, Gennaro R. 2011. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol. Life Sci. 68: 2317-2330.
- Shinnar AE, Butler KL, Park HJ. 2003. Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance. Bioorg. Chem. 31: 425-436.
- Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, et al. 2004. D egradation o f hum an antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48: 4673-4679.
- Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP. 1998. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol. 180: 4002-4006.
- Tomasinsig L, Scocchi M, Mettulio R, Zanetti M. 2004. Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob. Agents Chemother. 48: 3260-3267.
- Troeberg L, Pike RN, Morty RE, Berry RK, Coetzer TH, Lonsdale-Eccles JD. 1996. Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. Eur. J. Biochem. 238: 728-736.
- Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
Related articles in JMB
Article
Research article
J. Microbiol. Biotechnol. 2014; 24(2): 160-167
Published online February 28, 2014 https://doi.org/10.4014/jmb.1310.10015
Copyright © The Korean Society for Microbiology and Biotechnology.
Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides
Maura Mattiuzzo 1, Cristian De Gobba 2, Giulia Runti 1, Mario Mardirossian 1, Antonella Bandiera 1, Renato Gennaro 1 and Marco Scocchi 1*
1Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy, 2University of Copenhagen, Faculty of Science, Department of Food Science Rolighedsvej 30, 1958 Frederiksberg C, Denmark
Abstract
Oligopeptidase B (OpdB) is a serine peptidase widespread among bacteria and protozoa that
has emerged as a virulence factor despite its function has not yet been precisely established.
By using an OpdB-overexpressing Escherichia coli strain, we found that the overexpressed
peptidase makes the bacterial cells specifically less susceptible to several proline-rich
antimicrobial peptides known to penetrate into the bacterial cytosol, and that its level of
activity directly correlates with the degree of resistance. We established that E. coli OpdB can
efficiently hydrolyze in vitro cationic antimicrobial peptides up to 30 residues in length, even
though they contained several prolines, shortening them to inactive fragments. Two
consecutive basic residues are a preferred cleavage site for the peptidase. In the case of a single
basic residue, there is no cleavage if proline residues are present in the P1 and P2 positions.
These results also indicate that cytosolic peptidases may cause resistance to antimicrobial
peptides that have an intracellular mechanism of action, such as the proline-rich peptides, and
may contribute to define the substrate specificity of the E. coli OpdB.
Keywords: Antimicrobial peptide, proline-rich, Oligopeptidase B, proteolysis
References
- Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R. 2009. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J. Pept. Sci. 15: 595-600.
- Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R. 2004. Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25: 2055-2061.
- Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238250.
- Burleigh BA, Caler EV, Webster P, Andrews NW. 1997. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J. Cell Biol. 136: 609-620.
- Caler EV, Vaena de Avalos S, Haynes PA, Andrews NW, Burleigh BA. 1998. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J. 17: 4975-4986.
- Coetzer TH, Goldring JP, Huson LE. 2008. Oligopeptidase B:a processing peptidase involved in pathogenesis. Biochimie 90: 336-344.
- Fulop V, Bocskei Z, Polgar L. 1998. Prolyl oligopeptidase:an unusual beta-propeller domain regulates proteolysis. Cell 94: 161-170.
- Guina T, Yi EC, Wang H, Hackett M, Miller SI. 2000. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alphahelical antimicrobial peptides. J. Bacteriol. 182: 4077-4086.
- Hemerly JP, Oliveira V, Del Nery E, Morty RE, Andrews NW, Juliano MA, Juliano L. 2003. Subsite specificity (S3, S2, S1’, S2’, and S3’) of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides:comparative study and identification of specific carboxypeptidase activity. Biochem. J. 373: 933-939.
- Kanatani A, Masuda T, Shimoda T, Misoka F, Lin XS, Yoshimoto T, Tsuru D. 1991. Protease II from Escherichia coli: sequencing and expression of the enzyme gene and characterization of the expressed enzyme. J. Biochem. (Tokyo) 110: 315-320.
- Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos Jr L. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperoneassisted protein folding. Biochemistry 40: 3016-3026.
- Marcos JF, Gandia M. 2009. Antimicrobial peptides: to membranes and beyond. Expert Opin. Drug Discov. 4: 659-671.
- Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M. 2007. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66: 151-163.
- McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC. 2010. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J. Biol. Chem. 285: 39249-39259.
- Morty RE, Authie E, Troeberg L, Lonsdale-Eccles JD, Coetzer TH. 1999. Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol. Biochem. Parasitol. 102: 145-155.
- Morty RE, Fulop V, Andrews NW. 2002. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 3329-3337.
- Morty RE, Lonsdale-Eccles JD, Morehead J, Caler EV, Mentele R, Auerswald EA, et al. 1999. Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J. Biol. Chem. 274: 2614926156.
- Morty RE, Pelle R, Vadasz I, Uzcanga GL, Seeger W, Bubis J. 2005. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem. 280: 1092510937.
- Morty RE, Troeberg L, Powers JC, Ono S, Lonsdale-Eccles JD, Coetzer TH. 2000. Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters. Biochem. Pharmacol. 60: 1497-1504.
- Nguyen LT, Haney EF, Vogel HJ. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29: 464-472.
- Peschel A, Sahl HG. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4: 529-536.
- Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760: 1732-1740.
- Polgar L. 1997. A potential processing enzyme in prokaryotes:oligopeptidase B, a new type of serine peptidase. Proteins 28: 375-379.
- Rawlings ND, Polgar L, Barrett AJ. 1991. A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem. J. 279: 907-908.
- Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L. 2002. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46: 157-168.
- Scocchi M, Tossi A, Gennaro R. 2011. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol. Life Sci. 68: 2317-2330.
- Shinnar AE, Butler KL, Park HJ. 2003. Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance. Bioorg. Chem. 31: 425-436.
- Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, et al. 2004. D egradation o f hum an antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48: 4673-4679.
- Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP. 1998. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol. 180: 4002-4006.
- Tomasinsig L, Scocchi M, Mettulio R, Zanetti M. 2004. Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob. Agents Chemother. 48: 3260-3267.
- Troeberg L, Pike RN, Morty RE, Berry RK, Coetzer TH, Lonsdale-Eccles JD. 1996. Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. Eur. J. Biochem. 238: 728-736.
- Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.












PDF
Standard view
Export citation
Share 







