전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R. 2009. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J. Pept. Sci. 15: 595-600.
    CrossRef
  2. Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R. 2004. Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25: 2055-2061.
    CrossRef
  3. Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238250.
    CrossRef
  4. Burleigh BA, Caler EV, Webster P, Andrews NW. 1997. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J. Cell Biol. 136: 609-620.
    CrossRef
  5. Caler EV, Vaena de Avalos S, Haynes PA, Andrews NW, Burleigh BA. 1998. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J. 17: 4975-4986.
    CrossRef
  6. Coetzer TH, Goldring JP, Huson LE. 2008. Oligopeptidase B:a processing peptidase involved in pathogenesis. Biochimie 90: 336-344.
    CrossRef
  7. Fulop V, Bocskei Z, Polgar L. 1998. Prolyl oligopeptidase:an unusual beta-propeller domain regulates proteolysis. Cell 94: 161-170.
    CrossRef
  8. Guina T, Yi EC, Wang H, Hackett M, Miller SI. 2000. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alphahelical antimicrobial peptides. J. Bacteriol. 182: 4077-4086.
    CrossRef
  9. Hemerly JP, Oliveira V, Del Nery E, Morty RE, Andrews NW, Juliano MA, Juliano L. 2003. Subsite specificity (S3, S2, S1’, S2’, and S3’) of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides:comparative study and identification of specific carboxypeptidase activity. Biochem. J. 373: 933-939.
    CrossRef
  10. Kanatani A, Masuda T, Shimoda T, Misoka F, Lin XS, Yoshimoto T, Tsuru D. 1991. Protease II from Escherichia coli: sequencing and expression of the enzyme gene and characterization of the expressed enzyme. J. Biochem. (Tokyo) 110: 315-320.
  11. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos Jr L. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperoneassisted protein folding. Biochemistry 40: 3016-3026.
    CrossRef
  12. Marcos JF, Gandia M. 2009. Antimicrobial peptides: to membranes and beyond. Expert Opin. Drug Discov. 4: 659-671.
    CrossRef
  13. Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M. 2007. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66: 151-163.
    CrossRef
  14. McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC. 2010. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J. Biol. Chem. 285: 39249-39259.
    CrossRef
  15. Morty RE, Authie E, Troeberg L, Lonsdale-Eccles JD, Coetzer TH. 1999. Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol. Biochem. Parasitol. 102: 145-155.
    CrossRef
  16. Morty RE, Fulop V, Andrews NW. 2002. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 3329-3337.
    CrossRef
  17. Morty RE, Lonsdale-Eccles JD, Morehead J, Caler EV, Mentele R, Auerswald EA, et al. 1999. Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J. Biol. Chem. 274: 2614926156.
    CrossRef
  18. Morty RE, Pelle R, Vadasz I, Uzcanga GL, Seeger W, Bubis J. 2005. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem. 280: 1092510937.
    CrossRef
  19. Morty RE, Troeberg L, Powers JC, Ono S, Lonsdale-Eccles JD, Coetzer TH. 2000. Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters. Biochem. Pharmacol. 60: 1497-1504.
    CrossRef
  20. Nguyen LT, Haney EF, Vogel HJ. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29: 464-472.
    CrossRef
  21. Peschel A, Sahl HG. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4: 529-536.
    CrossRef
  22. Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760: 1732-1740.
    CrossRef
  23. Polgar L. 1997. A potential processing enzyme in prokaryotes:oligopeptidase B, a new type of serine peptidase. Proteins 28: 375-379.
    CrossRef
  24. Rawlings ND, Polgar L, Barrett AJ. 1991. A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem. J. 279: 907-908.
  25. Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L. 2002. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46: 157-168.
    CrossRef
  26. Scocchi M, Tossi A, Gennaro R. 2011. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol. Life Sci. 68: 2317-2330.
    CrossRef
  27. Shinnar AE, Butler KL, Park HJ. 2003. Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance. Bioorg. Chem. 31: 425-436.
    CrossRef
  28. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, et al. 2004. D egradation o f hum an antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48: 4673-4679.
    CrossRef
  29. Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP. 1998. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol. 180: 4002-4006.
  30. Tomasinsig L, Scocchi M, Mettulio R, Zanetti M. 2004. Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob. Agents Chemother. 48: 3260-3267.
    CrossRef
  31. Troeberg L, Pike RN, Morty RE, Berry RK, Coetzer TH, Lonsdale-Eccles JD. 1996. Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. Eur. J. Biochem. 238: 728-736.
    CrossRef
  32. Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
    CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2014; 24(2): 160-167

Published online February 28, 2014 https://doi.org/10.4014/jmb.1310.10015

Copyright © The Korean Society for Microbiology and Biotechnology.

Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides

Maura Mattiuzzo 1, Cristian De Gobba 2, Giulia Runti 1, Mario Mardirossian 1, Antonella Bandiera 1, Renato Gennaro 1 and Marco Scocchi 1*

1Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy, 2University of Copenhagen, Faculty of Science, Department of Food Science Rolighedsvej 30, 1958 Frederiksberg C, Denmark

Received: October 7, 2013; Accepted: November 13, 2013

Abstract

Oligopeptidase B (OpdB) is a serine peptidase widespread among bacteria and protozoa that
has emerged as a virulence factor despite its function has not yet been precisely established.
By using an OpdB-overexpressing Escherichia coli strain, we found that the overexpressed
peptidase makes the bacterial cells specifically less susceptible to several proline-rich
antimicrobial peptides known to penetrate into the bacterial cytosol, and that its level of
activity directly correlates with the degree of resistance. We established that E. coli OpdB can
efficiently hydrolyze in vitro cationic antimicrobial peptides up to 30 residues in length, even
though they contained several prolines, shortening them to inactive fragments. Two
consecutive basic residues are a preferred cleavage site for the peptidase. In the case of a single
basic residue, there is no cleavage if proline residues are present in the P1 and P2 positions.
These results also indicate that cytosolic peptidases may cause resistance to antimicrobial
peptides that have an intracellular mechanism of action, such as the proline-rich peptides, and
may contribute to define the substrate specificity of the E. coli OpdB.

Keywords: Antimicrobial peptide, proline-rich, Oligopeptidase B, proteolysis

References

  1. Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R. 2009. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J. Pept. Sci. 15: 595-600.
    CrossRef
  2. Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R. 2004. Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25: 2055-2061.
    CrossRef
  3. Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238250.
    CrossRef
  4. Burleigh BA, Caler EV, Webster P, Andrews NW. 1997. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J. Cell Biol. 136: 609-620.
    CrossRef
  5. Caler EV, Vaena de Avalos S, Haynes PA, Andrews NW, Burleigh BA. 1998. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J. 17: 4975-4986.
    CrossRef
  6. Coetzer TH, Goldring JP, Huson LE. 2008. Oligopeptidase B:a processing peptidase involved in pathogenesis. Biochimie 90: 336-344.
    CrossRef
  7. Fulop V, Bocskei Z, Polgar L. 1998. Prolyl oligopeptidase:an unusual beta-propeller domain regulates proteolysis. Cell 94: 161-170.
    CrossRef
  8. Guina T, Yi EC, Wang H, Hackett M, Miller SI. 2000. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alphahelical antimicrobial peptides. J. Bacteriol. 182: 4077-4086.
    CrossRef
  9. Hemerly JP, Oliveira V, Del Nery E, Morty RE, Andrews NW, Juliano MA, Juliano L. 2003. Subsite specificity (S3, S2, S1’, S2’, and S3’) of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides:comparative study and identification of specific carboxypeptidase activity. Biochem. J. 373: 933-939.
    CrossRef
  10. Kanatani A, Masuda T, Shimoda T, Misoka F, Lin XS, Yoshimoto T, Tsuru D. 1991. Protease II from Escherichia coli: sequencing and expression of the enzyme gene and characterization of the expressed enzyme. J. Biochem. (Tokyo) 110: 315-320.
  11. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos Jr L. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperoneassisted protein folding. Biochemistry 40: 3016-3026.
    CrossRef
  12. Marcos JF, Gandia M. 2009. Antimicrobial peptides: to membranes and beyond. Expert Opin. Drug Discov. 4: 659-671.
    CrossRef
  13. Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M. 2007. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66: 151-163.
    CrossRef
  14. McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC. 2010. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J. Biol. Chem. 285: 39249-39259.
    CrossRef
  15. Morty RE, Authie E, Troeberg L, Lonsdale-Eccles JD, Coetzer TH. 1999. Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol. Biochem. Parasitol. 102: 145-155.
    CrossRef
  16. Morty RE, Fulop V, Andrews NW. 2002. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 3329-3337.
    CrossRef
  17. Morty RE, Lonsdale-Eccles JD, Morehead J, Caler EV, Mentele R, Auerswald EA, et al. 1999. Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J. Biol. Chem. 274: 2614926156.
    CrossRef
  18. Morty RE, Pelle R, Vadasz I, Uzcanga GL, Seeger W, Bubis J. 2005. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem. 280: 1092510937.
    CrossRef
  19. Morty RE, Troeberg L, Powers JC, Ono S, Lonsdale-Eccles JD, Coetzer TH. 2000. Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters. Biochem. Pharmacol. 60: 1497-1504.
    CrossRef
  20. Nguyen LT, Haney EF, Vogel HJ. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29: 464-472.
    CrossRef
  21. Peschel A, Sahl HG. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4: 529-536.
    CrossRef
  22. Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760: 1732-1740.
    CrossRef
  23. Polgar L. 1997. A potential processing enzyme in prokaryotes:oligopeptidase B, a new type of serine peptidase. Proteins 28: 375-379.
    CrossRef
  24. Rawlings ND, Polgar L, Barrett AJ. 1991. A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem. J. 279: 907-908.
  25. Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L. 2002. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46: 157-168.
    CrossRef
  26. Scocchi M, Tossi A, Gennaro R. 2011. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol. Life Sci. 68: 2317-2330.
    CrossRef
  27. Shinnar AE, Butler KL, Park HJ. 2003. Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance. Bioorg. Chem. 31: 425-436.
    CrossRef
  28. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, et al. 2004. D egradation o f hum an antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48: 4673-4679.
    CrossRef
  29. Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP. 1998. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol. 180: 4002-4006.
  30. Tomasinsig L, Scocchi M, Mettulio R, Zanetti M. 2004. Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob. Agents Chemother. 48: 3260-3267.
    CrossRef
  31. Troeberg L, Pike RN, Morty RE, Berry RK, Coetzer TH, Lonsdale-Eccles JD. 1996. Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. Eur. J. Biochem. 238: 728-736.
    CrossRef
  32. Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
    CrossRef