전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Abe, K., H. Hayashi, and P. C. Maloney. 1996. Exchange of aspartate and alanine. Mechanism for development of a protonmotive force in bacteria. J. Biol. Chem. 271: 3079-3084.
    Pubmed
  2. Allerberger, F. and M. Wagner. 2010. Listeriosis: A resurgent foodborne infection. Clin. Microbiol. Infect. 16: 16-23.
    Pubmed CrossRef
  3. Autret, N., I. Dubail, P. Trieu-Cuot, P. Berche, and A. Charbit. 2001. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69: 2054-2065.
    Pubmed PMC CrossRef
  4. Bakker, H. C., X. Didelot, E. D. Fortes, K. K. Nightingale, and M. Wiedmann. 2008. Lineage specific rates and microevolution in Listeria monocytogenes. BMC Evol. Biol. 8: 277.
    Pubmed PMC CrossRef
  5. Begley, M., P. D. Cotter, C. Hill, and R. P. Ross. 2010. Glutamate decarboxylase-mediated nisin resistance in Listeria monocytogenes. Appl. Environ. Microbiol. 76: 6541-6546.
    Pubmed PMC CrossRef
  6. Bierne, H., C. Sabet, N. Personnic, and P. Cossart. 2007. Internalins: A complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect. 9: 11561166.
    Pubmed CrossRef
  7. Bille, J., D. S. Blanc, H. Schmid, K. Boubaker, A. Baumgartner, H. H. Siegrist, et al. 2006. Outbreak of human listeriosis associated with Tomme cheese in northwest Switzerland, 2005. Euro. Surveill. 11: 91-93.
    Pubmed
  8. Bonnet, M., M. M. Rafi, M. L. Chikindas, and T. J. Montville. 2006. Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes. Appl. Environ. Microbiol. 72: 2556-2563.
    Pubmed PMC CrossRef
  9. Chen, J., X. Zhang, L. Mei, L. Jiang, and W. Fang. 2009. Prevalence of Listeria in Chinese food products from 13 provinces between 2000 and 2007 and virulence characterization of Listeria monocytogenes isolates. Foodborne Pathog. Dis. 6:7-14.
    Pubmed CrossRef
  10. Chen, J., L. Jiang, Q. Chen, H. Zhao, X. Luo, X. Chen, and W. Fang. 2009. lmo0038 is involved in acid and heat stress responses and specific for L. monocytogenes lineages I and II, and L. ivanovii. Foodborne Pathog. Dis. 6: 365-376.
    Pubmed CrossRef
  11. Chen, J., X. Luo, L. Jiang, P. Jin, W. Wei, D. Liu, and W. Fang. 2009. Molecular characteristics and virulence potential of Listeria monocytogenes isolates from Chinese food systems. Food Microbiol. 26: 103-111.
    Pubmed CrossRef
  12. Chen, J., L. Jiang, X. Chen, X. Luo, Y. Chen, Y. Yu, et al. 2009. Listeria monocytogenes serovar 4a is a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua. J. Microbiol. Biotechnol. 19: 238249.
    Pubmed
  13. Chen, J., Q. Chen, L. Jiang, C. Cheng, F. Bai, J. Wang, et al. 2010. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes. BMC Microbiol. 10: 97.
    Pubmed PMC CrossRef
  14. Chen, J., Q. Chen, J. Jiang, H. Hu, J. Ye, and W. Fang. 2010. Serovar 4b complex predominates among Listeria monocytogenes isolates from imported aquatic products in China. Foodborne Pathog. Dis. 7: 31-41.
    Pubmed CrossRef
  15. Chen, J., C. Cheng, Y. Xia, H. Zhao, C. Fang, Y. Shan, et al. 2011. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiology 157: 3150-3161.
    Pubmed CrossRef
  16. Chen, J., C. Fang, T. Zheng, N. Zhu, Y. Bei, and W. Fang. 2012. Genomic presence of GadD1 glutamate decarboxylase correlates with the organization of ascB-dapE internalin cluster in Listeria monocytogenes. Foodborne Pathog. Dis. 9: 175-178.
    Pubmed CrossRef
  17. Clark, C. G., J. Farber, F. Pagotto, N. Ciampa, K. Doré, C. Nadon, et al. 2010. Surveillance for Listeria monocytogenes and listeriosis, 1995-2004. Epidemiol. Infect. 138: 559-572.
    Pubmed CrossRef
  18. Cotter, P. D., C. G. Gahan, and C. Hill. 2001. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol. Microbiol. 40: 465-475.
    Pubmed CrossRef
  19. Cotter, P. D., S. Ryan, C. G. Gahan, and C. Hill. 2005. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl. Environ. Microbiol. 71: 2832-2839.
    Pubmed PMC CrossRef
  20. Dawson, S. J., M. R. Evans, D. Willby, J. Bardwell, N. Chamberlain, and D. A. Lewis. 2006. Listeria outbreak associated with sandwich consumption from a hospital retail shop, United Kingdom. Euro. Surveill. 11: 89-91.
    Pubmed
  21. Didelot, X. and D. Falush. 2007. Inference of bacterial microevolution using multilocus sequence data. Genetics 175:1251-1266.
    Pubmed PMC CrossRef
  22. Doumith, M., C. Cazalet, N. Simoes, L. Frangeul, C. Jacquet, F. Kunst, et al. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72: 1072-1083.
    Pubmed PMC CrossRef
  23. Fretz, R., J. Pichler, U. Sagel, P. Much, W. Ruppitsch, A. T. Pietzka, et al. 2010. Update: Multinational listeriosis outbreak due to ‘Quargel’, a sour milk curd cheese, caused by two different L. monocytogenes serotype 1/2a strains, 2009-2010. Euro. Surveill 15: 19543.
    Pubmed
  24. Gilmour, M. W., M. Graham, G. V. Domselaar, S. Tyler, H. Kent, K. M. Trout-Yakel, et al. 2010. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11: 120.
    Pubmed PMC
  25. Gray, M. J., R. N. Zadoks, E. D. Fortes, B. Dogan, S. Cai, Y. Chen, et al. 2004. Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl. Environ. Microbiol. 70: 5833-5841.
    Pubmed PMC CrossRef
  26. Guttman, D. S. and D. E. Dykhuizen. 1994. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266: 1380-1383.
    Pubmed CrossRef
  27. Higuchi, T., H. Hayashi, and K. Abe. 1997. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. Appl. Environ. Microbiol. 179: 3362-3364.
  28. Jacquet, C., M. Doumith, J. I. Gordon, P. M. Martin, P. Cossart, and M. Lecuit. 2004. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect. Dis. 189: 2094-2100.
    Pubmed CrossRef
  29. Kathariou, S. 2002. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 65:1811-1829.
    Pubmed
  30. Kirchner, M. and D. E. Higgins. 2008. Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes. Mol. Microbiol. 68: 749-767.
    Pubmed PMC CrossRef
  31. Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55: 181-186.
    CrossRef
  32. Liu, D. 2006. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J. Med. Microbiol. 55: 645-659.
    Pubmed CrossRef
  33. Liu, D., M. L. Lawrence, M. Wiedmann, L. Gorski, R. E. Mandrell, A. J. Ainsworth, and F. K. Austin. 2006. Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential. J. Clin. Microbiol. 44: 4229-4233.
    Pubmed PMC CrossRef
  34. Milkman, R. and M. Bridges. 1990. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126:505-517.
    Pubmed PMC
  35. Milillo, S. R. and M. Wiedmann. 2009. Contributions of six lineage-specific internalin-like genes to invasion efficiency of Listeria monocytogenes. Foodborne Pathog. Dis. 6: 57-70.
    Pubmed CrossRef
  36. Molenaar, D., J. S. Bosscher, B. ten Brink, A. J. Driessen, and W. N. Konings. 1993. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175: 82642870.
  37. Nielsen, R. 2001. Statistical tests of selective neutrality in the age of genomics. Heredity 86: 641-647.
    Pubmed CrossRef
  38. Nightingale, K., K. Windham, and M. Wiedmann. 2005. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J. Bacteriol. 187: 5537-5551.
    Pubmed PMC CrossRef
  39. Orsi, R. H., H. C. den Bakker, and M. Wiedmann. 2010. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 301: 79-96.
    Pubmed CrossRef
  40. Parihar, V. S., G. Lopez-Valladares, M. L. Danielsson-Tham, I. Peiris, S. Helmersson, M. Unemo, et al. 2008. Characterization of human invasive isolates of Listeria monocytogenes in Sweden, 1986-2007. Foodborne Pathog. Dis. 5: 755-761.
    Pubmed CrossRef
  41. Pérez-Losada, M., E. B. Browne, A. Madsen, T. Wirth, R. P. Viscidi, and K. A. Crandall. 2006. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect. Genet. Evol. 6: 97-112.
    Pubmed PMC CrossRef
  42. Ragon, M., T. Wirth, F. Hollandt, R. Lavenir, M. Lecuit, A. L. Monnier, and S. Brisse. 2008. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 4: 1-14.
    Pubmed PMC CrossRef
  43. Ross, A. I., M. W. Griffiths, G. S. Mittal, and H. C. Deeth. 2003. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 89: 125-138.
    CrossRef
  44. Rozas, J., J. Sünchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497.
    Pubmed CrossRef
  45. Simonsen, K., G. Churchill, and C. Aquadro. 1995. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141: 413-429.
    Pubmed PMC
  46. Swaminathan, B. and P. Gerner-Smidt. 2007. The epidemiology of human listeriosis. Microbes Infect. 9: 1236-1243.
    Pubmed CrossRef
  47. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
    Pubmed PMC
  48. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
    Pubmed CrossRef
  49. Urwin, R. and M. C. J. Maiden. 2003. Multi-locus sequence typing: A tool for global epidemiology. Trends Microbiol. 11:479-487.
    Pubmed CrossRef
  50. van Stelten, A. and K. K. Nightingale. 2008. Development and implementation of a multiplex single-nucleotide polymorphism genotyping assay for detection of virulence-attenuating mutations in the Listeria monocytogenes virulence-associated gene inlA. Appl. Environ. Microbiol. 74: 7365-7375.
    Pubmed PMC CrossRef
  51. van Stelten, A., J. M. Simpson, T. J. Ward, and K. K. Nightingale. 2010. Revelation by single-nucleotide polymorphism genotyping that mutations leading to a premature stop codon in inlA are common among Listeria monocytogenes isolates from ready-to-eat foods but not human listeriosis cases. Appl. Environ. Microbiol. 76: 2783-2790.
    Pubmed PMC CrossRef
  52. Ward, T. J., T. F. Ducey, T. Usgaard, K. A. Dunn, and J. P. Bielawski. 2008. Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Appl. Environ. Microbiol. 74: 7629-7642.
    Pubmed PMC CrossRef
  53. Ward, T. J., P. Evans, M. Wiedmann, T. Usgaard, S. E. Roof, S. G. Stroika, and K. Hise. 2010. Molecular and phenotypic characterization of Listeria monocytogenes from U.S. Department of Agriculture Food Safety and Inspection Service surveillance of ready-to-eat foods and processing facilities. J. Food Prot. 73:861-869.
    Pubmed
  54. Wiedmann, M., J. L. Bruce, C. Keatine, A. E. Johnson, P. L. McDonough, and C. A. Batt. 1997. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect. Immun. 65: 2707-2716.
    Pubmed PMC
  55. Wirth, T., D. Falush, R. Lan, F. Colles, P. Mensa, L. Wieler, et al. 2006. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 60: 1136-1151.
    Pubmed PMC CrossRef
  56. Zhang, W., B. M. Jayarao, and S. J. Knabel. 2004. Multivirulencelocus sequence typing of Listeria monocytogenes. Appl. Environ. Microbiol. 70: 913-920.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2012; 22(5): 575-584

Published online May 28, 2012 https://doi.org/10.4014/jmb.1110.10056

Copyright © The Korean Society for Microbiology and Biotechnology.

Genetic Organization of ascB-dapE Internalin Cluster Serves as a Potential Marker for Listeria monocytogenes Sublineages IIA, IIB, and IIC

Jianshun Chen 1, 2, 3, Chun Fang 1, Ningyu Zhu 2, 3, Yonghui Lv 4, Changyong Cheng 1, Yijiang Bei 2, 3, Tianlun Zheng 2, 3 and Weihuan Fang 1*

1Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, P.R. China, 2Zhejiang Fisheries Technical Extension Center, 20 Yile Road, Hangzhou, Zhejiang 310012, P.R. China, 3Zhejiang Aquatic Disease Prevention and Quarantine Center, 20 Yile Road, Hangzhou, Zhejiang 310012, P.R. China, 4National Fisheries Technical Extension Center, 18 Maizidian Road, Beijing 100125, P.R. China

Received: October 17, 2011; Accepted: January 8, 2012

Abstract

Listeria monocytogenes is an important foodborne pathogen
that comprises four genetic lineages: I, II, III, and IV. Of
these, lineage II is frequently recovered from foods and
environments and responsible for the increasing incidence of
human listeriosis. In this study, the phylogenetic structure
of lineage II was determined through sequencing analysis
of the ascB-dapE internalin cluster. Fifteen sequence types
proposed by multilocus sequence typing based on nine
housekeeping genes were grouped into three distinct
sublineages, IIA, IIB, and IIC. Organization of the ascBdapE
internalin cluster could serve as a molecular marker
for these sublineages, with inlGHE, inlGC2DE, and inlC2DE
for IIA, IIB, and IIC, respectively. These sublineages
displayed specific genetic and phenotypic characteristics.
IIA and IIC showed a higher frequency of recombination
(ρ/θ). However, recombination events had greater effect
(r/m) on IIB, leading to its high nucleotide diversity.
Moreover, IIA and IIB harbored a wider range of
internalin and stress-response genes, and possessed higher
nisin tolerance, whereas IIC contained the largest portion
of low-virulent strains owing to premature stop codons in
inlA. The results of this study indicate that IIA, IIB, and
IIC might occupy different ecological niches, and IIB might
have a better adaptation to a broad range of environmental
niches.

Keywords: L. monocytogenes, lineage II, sublineage, ascB-dapE internalin cluster

References

  1. Abe, K., H. Hayashi, and P. C. Maloney. 1996. Exchange of aspartate and alanine. Mechanism for development of a protonmotive force in bacteria. J. Biol. Chem. 271: 3079-3084.
    Pubmed
  2. Allerberger, F. and M. Wagner. 2010. Listeriosis: A resurgent foodborne infection. Clin. Microbiol. Infect. 16: 16-23.
    Pubmed CrossRef
  3. Autret, N., I. Dubail, P. Trieu-Cuot, P. Berche, and A. Charbit. 2001. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69: 2054-2065.
    Pubmed KoreaMed CrossRef
  4. Bakker, H. C., X. Didelot, E. D. Fortes, K. K. Nightingale, and M. Wiedmann. 2008. Lineage specific rates and microevolution in Listeria monocytogenes. BMC Evol. Biol. 8: 277.
    Pubmed KoreaMed CrossRef
  5. Begley, M., P. D. Cotter, C. Hill, and R. P. Ross. 2010. Glutamate decarboxylase-mediated nisin resistance in Listeria monocytogenes. Appl. Environ. Microbiol. 76: 6541-6546.
    Pubmed KoreaMed CrossRef
  6. Bierne, H., C. Sabet, N. Personnic, and P. Cossart. 2007. Internalins: A complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect. 9: 11561166.
    Pubmed CrossRef
  7. Bille, J., D. S. Blanc, H. Schmid, K. Boubaker, A. Baumgartner, H. H. Siegrist, et al. 2006. Outbreak of human listeriosis associated with Tomme cheese in northwest Switzerland, 2005. Euro. Surveill. 11: 91-93.
    Pubmed
  8. Bonnet, M., M. M. Rafi, M. L. Chikindas, and T. J. Montville. 2006. Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes. Appl. Environ. Microbiol. 72: 2556-2563.
    Pubmed KoreaMed CrossRef
  9. Chen, J., X. Zhang, L. Mei, L. Jiang, and W. Fang. 2009. Prevalence of Listeria in Chinese food products from 13 provinces between 2000 and 2007 and virulence characterization of Listeria monocytogenes isolates. Foodborne Pathog. Dis. 6:7-14.
    Pubmed CrossRef
  10. Chen, J., L. Jiang, Q. Chen, H. Zhao, X. Luo, X. Chen, and W. Fang. 2009. lmo0038 is involved in acid and heat stress responses and specific for L. monocytogenes lineages I and II, and L. ivanovii. Foodborne Pathog. Dis. 6: 365-376.
    Pubmed CrossRef
  11. Chen, J., X. Luo, L. Jiang, P. Jin, W. Wei, D. Liu, and W. Fang. 2009. Molecular characteristics and virulence potential of Listeria monocytogenes isolates from Chinese food systems. Food Microbiol. 26: 103-111.
    Pubmed CrossRef
  12. Chen, J., L. Jiang, X. Chen, X. Luo, Y. Chen, Y. Yu, et al. 2009. Listeria monocytogenes serovar 4a is a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua. J. Microbiol. Biotechnol. 19: 238249.
    Pubmed
  13. Chen, J., Q. Chen, L. Jiang, C. Cheng, F. Bai, J. Wang, et al. 2010. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes. BMC Microbiol. 10: 97.
    Pubmed KoreaMed CrossRef
  14. Chen, J., Q. Chen, J. Jiang, H. Hu, J. Ye, and W. Fang. 2010. Serovar 4b complex predominates among Listeria monocytogenes isolates from imported aquatic products in China. Foodborne Pathog. Dis. 7: 31-41.
    Pubmed CrossRef
  15. Chen, J., C. Cheng, Y. Xia, H. Zhao, C. Fang, Y. Shan, et al. 2011. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiology 157: 3150-3161.
    Pubmed CrossRef
  16. Chen, J., C. Fang, T. Zheng, N. Zhu, Y. Bei, and W. Fang. 2012. Genomic presence of GadD1 glutamate decarboxylase correlates with the organization of ascB-dapE internalin cluster in Listeria monocytogenes. Foodborne Pathog. Dis. 9: 175-178.
    Pubmed CrossRef
  17. Clark, C. G., J. Farber, F. Pagotto, N. Ciampa, K. Doré, C. Nadon, et al. 2010. Surveillance for Listeria monocytogenes and listeriosis, 1995-2004. Epidemiol. Infect. 138: 559-572.
    Pubmed CrossRef
  18. Cotter, P. D., C. G. Gahan, and C. Hill. 2001. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol. Microbiol. 40: 465-475.
    Pubmed CrossRef
  19. Cotter, P. D., S. Ryan, C. G. Gahan, and C. Hill. 2005. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl. Environ. Microbiol. 71: 2832-2839.
    Pubmed KoreaMed CrossRef
  20. Dawson, S. J., M. R. Evans, D. Willby, J. Bardwell, N. Chamberlain, and D. A. Lewis. 2006. Listeria outbreak associated with sandwich consumption from a hospital retail shop, United Kingdom. Euro. Surveill. 11: 89-91.
    Pubmed
  21. Didelot, X. and D. Falush. 2007. Inference of bacterial microevolution using multilocus sequence data. Genetics 175:1251-1266.
    Pubmed KoreaMed CrossRef
  22. Doumith, M., C. Cazalet, N. Simoes, L. Frangeul, C. Jacquet, F. Kunst, et al. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72: 1072-1083.
    Pubmed KoreaMed CrossRef
  23. Fretz, R., J. Pichler, U. Sagel, P. Much, W. Ruppitsch, A. T. Pietzka, et al. 2010. Update: Multinational listeriosis outbreak due to ‘Quargel’, a sour milk curd cheese, caused by two different L. monocytogenes serotype 1/2a strains, 2009-2010. Euro. Surveill 15: 19543.
    Pubmed
  24. Gilmour, M. W., M. Graham, G. V. Domselaar, S. Tyler, H. Kent, K. M. Trout-Yakel, et al. 2010. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11: 120.
    Pubmed KoreaMed
  25. Gray, M. J., R. N. Zadoks, E. D. Fortes, B. Dogan, S. Cai, Y. Chen, et al. 2004. Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl. Environ. Microbiol. 70: 5833-5841.
    Pubmed KoreaMed CrossRef
  26. Guttman, D. S. and D. E. Dykhuizen. 1994. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266: 1380-1383.
    Pubmed CrossRef
  27. Higuchi, T., H. Hayashi, and K. Abe. 1997. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. Appl. Environ. Microbiol. 179: 3362-3364.
  28. Jacquet, C., M. Doumith, J. I. Gordon, P. M. Martin, P. Cossart, and M. Lecuit. 2004. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect. Dis. 189: 2094-2100.
    Pubmed CrossRef
  29. Kathariou, S. 2002. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 65:1811-1829.
    Pubmed
  30. Kirchner, M. and D. E. Higgins. 2008. Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes. Mol. Microbiol. 68: 749-767.
    Pubmed KoreaMed CrossRef
  31. Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55: 181-186.
    CrossRef
  32. Liu, D. 2006. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J. Med. Microbiol. 55: 645-659.
    Pubmed CrossRef
  33. Liu, D., M. L. Lawrence, M. Wiedmann, L. Gorski, R. E. Mandrell, A. J. Ainsworth, and F. K. Austin. 2006. Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential. J. Clin. Microbiol. 44: 4229-4233.
    Pubmed KoreaMed CrossRef
  34. Milkman, R. and M. Bridges. 1990. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126:505-517.
    Pubmed KoreaMed
  35. Milillo, S. R. and M. Wiedmann. 2009. Contributions of six lineage-specific internalin-like genes to invasion efficiency of Listeria monocytogenes. Foodborne Pathog. Dis. 6: 57-70.
    Pubmed CrossRef
  36. Molenaar, D., J. S. Bosscher, B. ten Brink, A. J. Driessen, and W. N. Konings. 1993. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175: 82642870.
  37. Nielsen, R. 2001. Statistical tests of selective neutrality in the age of genomics. Heredity 86: 641-647.
    Pubmed CrossRef
  38. Nightingale, K., K. Windham, and M. Wiedmann. 2005. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J. Bacteriol. 187: 5537-5551.
    Pubmed KoreaMed CrossRef
  39. Orsi, R. H., H. C. den Bakker, and M. Wiedmann. 2010. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 301: 79-96.
    Pubmed CrossRef
  40. Parihar, V. S., G. Lopez-Valladares, M. L. Danielsson-Tham, I. Peiris, S. Helmersson, M. Unemo, et al. 2008. Characterization of human invasive isolates of Listeria monocytogenes in Sweden, 1986-2007. Foodborne Pathog. Dis. 5: 755-761.
    Pubmed CrossRef
  41. Pérez-Losada, M., E. B. Browne, A. Madsen, T. Wirth, R. P. Viscidi, and K. A. Crandall. 2006. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect. Genet. Evol. 6: 97-112.
    Pubmed KoreaMed CrossRef
  42. Ragon, M., T. Wirth, F. Hollandt, R. Lavenir, M. Lecuit, A. L. Monnier, and S. Brisse. 2008. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 4: 1-14.
    Pubmed KoreaMed CrossRef
  43. Ross, A. I., M. W. Griffiths, G. S. Mittal, and H. C. Deeth. 2003. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 89: 125-138.
    CrossRef
  44. Rozas, J., J. Sünchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497.
    Pubmed CrossRef
  45. Simonsen, K., G. Churchill, and C. Aquadro. 1995. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141: 413-429.
    Pubmed KoreaMed
  46. Swaminathan, B. and P. Gerner-Smidt. 2007. The epidemiology of human listeriosis. Microbes Infect. 9: 1236-1243.
    Pubmed CrossRef
  47. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
    Pubmed KoreaMed
  48. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
    Pubmed CrossRef
  49. Urwin, R. and M. C. J. Maiden. 2003. Multi-locus sequence typing: A tool for global epidemiology. Trends Microbiol. 11:479-487.
    Pubmed CrossRef
  50. van Stelten, A. and K. K. Nightingale. 2008. Development and implementation of a multiplex single-nucleotide polymorphism genotyping assay for detection of virulence-attenuating mutations in the Listeria monocytogenes virulence-associated gene inlA. Appl. Environ. Microbiol. 74: 7365-7375.
    Pubmed KoreaMed CrossRef
  51. van Stelten, A., J. M. Simpson, T. J. Ward, and K. K. Nightingale. 2010. Revelation by single-nucleotide polymorphism genotyping that mutations leading to a premature stop codon in inlA are common among Listeria monocytogenes isolates from ready-to-eat foods but not human listeriosis cases. Appl. Environ. Microbiol. 76: 2783-2790.
    Pubmed KoreaMed CrossRef
  52. Ward, T. J., T. F. Ducey, T. Usgaard, K. A. Dunn, and J. P. Bielawski. 2008. Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Appl. Environ. Microbiol. 74: 7629-7642.
    Pubmed KoreaMed CrossRef
  53. Ward, T. J., P. Evans, M. Wiedmann, T. Usgaard, S. E. Roof, S. G. Stroika, and K. Hise. 2010. Molecular and phenotypic characterization of Listeria monocytogenes from U.S. Department of Agriculture Food Safety and Inspection Service surveillance of ready-to-eat foods and processing facilities. J. Food Prot. 73:861-869.
    Pubmed
  54. Wiedmann, M., J. L. Bruce, C. Keatine, A. E. Johnson, P. L. McDonough, and C. A. Batt. 1997. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect. Immun. 65: 2707-2716.
    Pubmed KoreaMed
  55. Wirth, T., D. Falush, R. Lan, F. Colles, P. Mensa, L. Wieler, et al. 2006. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 60: 1136-1151.
    Pubmed KoreaMed CrossRef
  56. Zhang, W., B. M. Jayarao, and S. J. Knabel. 2004. Multivirulencelocus sequence typing of Listeria monocytogenes. Appl. Environ. Microbiol. 70: 913-920.