Cited by CrossRef (43)
- Larindja A. M. Pinheiro, Carla Pereira, Carolina Frazão, Victor M. Balcão, Adelaide Almeida. Efficiency of Phage φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in Vitro Preliminary Study. Microorganisms 2019;7:286
- Fatima Kamal, Alina Radziwon, Carly M. Davis, Jonathan J. Dennis. Bacteriophages. 2019.
- I. Donati, G. Buriani, A. Cellini, N. Raule, F. Spinelli. Screening of microbial biocoenosis of Actinidia chinensis for the isolation of candidate biological control agents against Pseudomonas syringae pv. actinidiae. Acta Hortic. 2018:239
- Suzanne L. Warring, Lucia M. Malone, Jay Jayaraman, Richard A. Easingwood, Luciano A. Rigano, Rebekah A. Frampton, Sandra B. Visnovsky, Shea M. Addison, Loreto Hernandez, Andrew R. Pitman, Elena Lopez Acedo, Torsten Kleffmann, Matthew D. Templeton, Mihnea Bostina, Peter C. Fineran. A lipopolysaccharide‐dependent phage infects a pseudomonad phytopathogen and can evolve to evade phage resistance. Environmental Microbiology 2022;24:4834
- Oriana Flores, Julio Retamales, Mauricio Núñez, Marcela León, Paula Salinas, Ximena Besoain, Carolina Yañez, Roberto Bastías. Characterization of Bacteriophages against Pseudomonas Syringae pv. Actinidiae with Potential Use as Natural Antimicrobials in Kiwifruit Plants. Microorganisms 2020;8:974
- Li Liu, Bing Wang, Anqi Huang, Hua Zhang, Yubao Li, Lei Wang. Biological characteristics of the bacteriophage LDT325 and its potential application against the plant pathogen Pseudomonas syringae. Front. Microbiol. 2024;15
- Michał Wójcicki, Paulina Średnicka, Stanisław Błażejak, Iwona Gientka, Monika Kowalczyk, Paulina Emanowicz, Olga Świder, Barbara Sokołowska, Edyta Juszczuk-Kubiak. Characterization and Genome Study of Novel Lytic Bacteriophages against Prevailing Saprophytic Bacterial Microflora of Minimally Processed Plant-Based Food Products. IJMS 2021;22:12460
- Yujie Yin, Pei’en Ni, Bohan Deng, Shiping Wang, Wenping Xu, Dapeng Wang. Isolation and characterisation of phages againstPseudomonas syringaepv. actinidiae. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2019;69:199
- Somayeh Parsafar, Keivan Beheshti Maal, Hamid Reza Akkafi, Ladan Rahimzadeh Torabi. Isolation and identification of specific lytic bacteriophages as a biocontrol agent against Serratia odorifera PBA-IAUF-1 and Kluyvera intermedia PBA-IAUF-6 causing bacterial canker in the grape and Siberian pear. 2023;370
- Ron L. Dy, Luciano A. Rigano, Peter C. Fineran. Phage-based biocontrol strategies and their application in agriculture and aquaculture. 2018;46:1605
- Muhammad Saleem Iqbal Khan, Xiangzheng Gao, Keying Liang, Shengsheng Mei, Jinbiao Zhan. Virulent Drexlervirial Bacteriophage MSK, Morphological and Genome Resemblance With Rtp Bacteriophage Inhibits the Multidrug-Resistant Bacteria. Front. Microbiol. 2021;12
- Julia Sommer, Christoph Trautner, Anna Kristina Witte, Susanne Fister, Dagmar Schoder, Peter Rossmanith, Patrick-Julian Mester. Don’t Shut the Stable Door after the Phage Has Bolted—The Importance of Bacteriophage Inactivation in Food Environments. Viruses 2019;11:468
- Pamela Córdova, Juan Pablo Rivera-González, Victoria Rojas-Martínez, Nicola Fiore, Roberto Bastías, Alan Zamorano, Francisca Vera, Jaime Barrueto, Belén Díaz, Carolina Ilabaca-Díaz, Assunta Bertaccini, Gastón Higuera. Phytopathogenic Pseudomonas syringae as a Threat to Agriculture: Perspectives of a Promising Biological Control Using Bacteriophages and Microorganisms. Horticulturae 2023;9:712
- Suzanne L. Warring, Hazel M. Sisson, Peter C. Fineran, Mojgan Rabiey. Strategies for the biocontrol Pseudomonas infections pre‐fruit harvest. Microbial Biotechnology 2024;17
- Yanxi Liu, Mengjiao Liu, Ran Hu, Jun Bai, Xiaoqing He, Yi Jin. Isolation of the Novel Phage PHB09 and Its Potential Use against the Plant Pathogen Pseudomonas syringae pv. actinidiae. Viruses 2021;13:2275
- Colin Buttimer, Olivia McAuliffe, R. P. Ross, Colin Hill, Jim O’Mahony, Aidan Coffey. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017;8
- Nguyen Trung Vu, Chang-Sik Oh. Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants. Plant Pathol J 2020;36:204
- Roniya Thapa Magar, Seung Yeup Lee, Yu-Rim Song, Seon-Woo Lee, Chang-Sik Oh. Minimal adverse effects of exogenous phage treatment on soil bacterial communities. Applied Soil Ecology 2024;195:105250
- Michał Wójcicki, Olga Świder, Iwona Gientka, Stanisław Błażejak, Paulina Średnicka, Dziyana Shymialevich, Hanna Cieślak, Artur Wardaszka, Paulina Emanowicz, Barbara Sokołowska, Edyta Juszczuk-Kubiak. Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food. Viruses 2023;15:172
- Carmen Sieiro, Lara Areal-Hermida, Ángeles Pichardo-Gallardo, Raquel Almuiña-González, Trinidad de Miguel, Sandra Sánchez, Ángeles Sánchez-Pérez, Tomás G. Villa. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture?. Antibiotics 2020;9:493
- Hitendra Kumar Patel, Patrizia Ferrante, Meng Xianfa, Sree Gowrinadh Javvadi, Sujatha Subramoni, Marco Scortichini, Vittorio Venturi. Identification of Loci ofPseudomonas syringaepv.actinidiaeInvolved in Lipolytic Activity and Their Role in Colonization of Kiwifruit Leaves. Phytopathology® 2017;107:645
- Ramna Zia, Malik Nawaz Shuja, Muhammad Ali, Muhammad Sohail Afzal. Soil Microbiomes for Sustainable Agriculture. 2017.
- Neha Bisht, Parul Chaudhary. Microbial Inoculants. 2017.
- Emilio Stefani, Aleksa Obradović, Katarina Gašić, Irem Altin, Ildikó K. Nagy, Tamás Kovács. Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms 2021;9:1056
- Phil Huss, Srivatsan Raman. Engineered bacteriophages as programmable biocontrol agents. Current Opinion in Biotechnology 2020;61:116
- Zhong WEI, XiaoFang WANG, YingFei MA, Mao YE, YangChun XU, QiRong SHEN, YongGuan ZHU. Phage therapy for One Health approach: current status, challenges and opportunities. Sci. Sin.-Vitae 2022
- Miguel G. Santos, Marta Nunes da Silva, Marta W. Vasconcelos, Susana M. P. Carvalho. Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker. Front. Plant Sci. 2024;14
- Kanti Kiran, Gunjan Sharma. Stress-responsive Factors and Molecular Farming in Medicinal Plants. 2024.
- Vandana Chaudhary, Priyanka Kajla, Deepika Lather, Nisha Chaudhary, Priya Dangi, Punit Singh, Ravi Pandiselvam. Bacteriophages: a potential game changer in food processing industry. Critical Reviews in Biotechnology 2024:1
- Gabriele Martino, Dominique Holtappels, Marta Vallino, Marco Chiapello, Massimo Turina, Rob Lavigne, Jeroen Wagemans, Marina Ciuffo. Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection Infecting Pseudomonas syringae pv. actinidiae and P. syringae pv. phaseolicola from Northern Italy. Viruses 2021;13:2083
- Leonie Ziller, Patricia Christina Blum, Eva Miriam Buhl, Alex Krüttgen, Hans-Peter Horz, Thaysa Leite Tagliaferri. Newly isolated Drexlerviridae phage LAPAZ is physically robust and fosters eradication of Klebsiella pneumoniae in combination with meropenem. Virus Research 2024;347:199417
- Felipe Molina, Alfredo Simancas, Manuel Ramírez, Rafael Tabla, Isidro Roa, José Emilio Rebollo. A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Front. Microbiol. 2021;12
- Oluwaseyi Samuel Olanrewaju, Bernard R. Glick, Olubukola Oluranti Babalola. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 2017;33
- Jin-Tao Ma, Jiao-Xian Du, Yan Zhang, Ji-Kai Liu, Tao Feng, Juan He. Natural imidazole alkaloids as antibacterial agents against Pseudomonas syringae pv. actinidiae isolated from kiwi endophytic fungus Fusarium tricinctum. Fitoterapia 2022;156:105070
- Larindja A. M. Pinheiro, Carla Pereira, M. Esther Barreal, Pedro Pablo Gallego, Victor M. Balcão, Adelaide Almeida. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments. Appl Microbiol Biotechnol 2020;104:1319
- Anna Fiorillo, Domenico Frezza, Gustavo Di Lallo, Sabina Visconti. A Phage Therapy Model for the Prevention of Pseudomonas syringae pv. actinidiae Infection of Kiwifruit Plants. Plant Disease 2023;107:267
- Dimitrios Skliros, Polyxeni Papazoglou, Danai Gkizi, Eleni Paraskevopoulou, Pantelis Katharios, Dimitrios E Goumas, Sotirios Tjamos, Emmanouil Flemetakis. In planta interactions of a novel bacteriophage against Pseudomonas syringae pv. tomato. Appl Microbiol Biotechnol 2023;107:3801
- Jun Bai, Yanxi Liu, Mengjiao Liu, Shiting Luo, Yuhong Cheng, Gang Li, Cheng Liu, Shixiong Wen, Mian Xia, Xiaoqing He, Yi Jin. Application of phage therapy against red-fleshed kiwifruit canker. Biological Control 2022;169:104893
- Jungkum Park, Gyu Min Lee, Donghyuk Kim, Duck Hwan Park, Chang-Sik Oh. Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear. Plant Pathol J 2018;34:445
- Yu-Rim Song, Nguyen Trung Vu, Jungkum Park, In Sun Hwang, Hyeon-Ju Jeong, Youn-Sup Cho, Chang-Sik Oh. Phage PPPL-1, A New Biological Agent to Control Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae in Kiwifruit. Antibiotics 2021;10:554
- Susan Mills, R. Paul Ross, Colin Hill. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. 2017;41:S129
- Carla Pereira, Pedro Costa, Larindja Pinheiro, Victor M. Balcão, Adelaide Almeida. Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies. Planta 2021;253
- Sanghmitra Aditya, Bhagyashree Bhatt, Yaratha Nishith Reddy, Ajay Singh Sindhu, Gurudatt M. Hegde. Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. 2021.