JMB

Cited by CrossRef (87)

  1. Deepika Kumari, Xin-Yi Qian, Xiangliang Pan, Varenyam Achal, Qianwei Li, Geoffrey Michael Gadd. . .
    https://doi.org/10.1016/bs.aambs.2015.12.002
  2. Varenyam Achal, Abhijit Mukherjee, Deepika Kumari, Qiuzhuo Zhang. Biomineralization for sustainable construction – A review of processes and applications. Earth-Science Reviews 2015;148:1
    https://doi.org/10.1016/j.earscirev.2015.05.008
  3. J.Y. Wang, D. Snoeck, S. Van Vlierberghe, W. Verstraete, N. De Belie. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials 2014;68:110
    https://doi.org/10.1016/j.conbuildmat.2014.06.018
  4. Meghna Sharma, Neelima Satyam, Krishna R. Reddy, Maria Chrysochoou. Multiple heavy metal immobilization and strength improvement of contaminated soil using bio-mediated calcite precipitation technique. Environ Sci Pollut Res 2022
    https://doi.org/10.1007/s11356-022-19551-x
  5. Mengzhu Song, Tongyao Ju, Yuan Meng, Siyu Han, Li Lin, Jianguo Jiang. A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Chemosphere 2022;290:133229
    https://doi.org/10.1016/j.chemosphere.2021.133229
  6. Qianwei Li, Laszlo Csetenyi, Graeme Iain Paton, Geoffrey Michael Gadd. CaCO3and SrCO3bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol 2015;17:3082
    https://doi.org/10.1111/1462-2920.12954
  7. Xingqing Zhao, Ding Tang, Yi Jiang. Effect of the reduction–mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium. Science of The Total Environment 2021;777:146190
    https://doi.org/10.1016/j.scitotenv.2021.146190
  8. Meghna Sharma, Neelima Satyam. Strength and durability of biocemented sands: Wetting-drying cycles, ageing effects, and liquefaction resistance. Geoderma 2021;402:115359
    https://doi.org/10.1016/j.geoderma.2021.115359
  9. Arun Kumar Pal, Jyotsna Singh, Ramendra Soni, Pooja Tripathi, Madhu Kamle, Vijay Tripathi, Pradeep Kumar. Bioremediation of Pollutants. 2021.
    https://doi.org/10.1016/B978-0-12-819025-8.00010-7
  10. Gashaw Mamo, Bo Mattiasson. Alkaliphiles in Biotechnology. 2021.
    https://doi.org/10.1007/10_2019_94
  11. Peng Liu, Yu Zhang, Qiang Tang, Shenjie Shi. Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochemical Engineering Journal 2021;166:107856
    https://doi.org/10.1016/j.bej.2020.107856
  12. Meghna Sharma, Neelima Satyam, Krishna R. Reddy. Large-scale spatial characterization and liquefaction resistance of sand by hybrid bacteria induced biocementation. Engineering Geology 2022;302:106635
    https://doi.org/10.1016/j.enggeo.2022.106635
  13. Ahmed J. Mugwar, Michael J. Harbottle. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials 2016;314:237
    https://doi.org/10.1016/j.jhazmat.2016.04.039
  14. 建 苏. Analysis on Microbial Mineralization Technology of Contaminated Soil in Mining Area. AEP 2021;11:304
    https://doi.org/10.12677/AEP.2021.112032
  15. Abdullah Almajed, Mohammed Abdul Lateef, Arif Ali Baig Moghal, Kehinde Lemboye. State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications. Crystals 2021;11:370
    https://doi.org/10.3390/cryst11040370
  16. Ahsan Saif, Alessia Cuccurullo, Domenico Gallipoli, Céline Perlot, Agostino Walter Bruno. Advances in Enzyme Induced Carbonate Precipitation and Application to Soil Improvement: A Review. Materials 2022;15:950
    https://doi.org/10.3390/ma15030950
  17. M.M.H. Al Omari, I.S. Rashid, N.A. Qinna, A.M. Jaber, A.A. Badwan. . 2022.
    https://doi.org/10.1016/bs.podrm.2015.11.003
  18. Armstrong I. Omoregie, Enzo A. Palombo, Peter M. Nissom. Bioprecipitation of calcium carbonate mediated by ureolysis: A review. Environmental Engineering Research 2020;26:200379
    https://doi.org/10.4491/eer.2020.379
  19. Victoria Boyd, Hongkyu Yoon, Changyong Zhang, Mart Oostrom, Nancy Hess, Bruce Fouke, Albert J. Valocchi, Charles J. Werth. Influence of Mg2+ on CaCO3 precipitation during subsurface reactive transport in a homogeneous silicon-etched pore network. Geochimica et Cosmochimica Acta 2014;135:321
    https://doi.org/10.1016/j.gca.2014.03.018
  20. Vinicius Luiz Pacheco, Lucimara Bragagnolo, Cleomar Reginatto, Antonio Thomé. Microbially Induced Calcite Precipitation (MICP): Review from an Engineering Perspective. Geotech Geol Eng 2022;40:2379
    https://doi.org/10.1007/s10706-021-02041-1
  21. Xinyi Qian, Chaolin Fang, Minsheng Huang, Varenyam Achal. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production 2017;164:198
    https://doi.org/10.1016/j.jclepro.2017.06.195
  22. Marwa Eltarahony, Ayman Kamal, Sahar Zaki, Desouky Abd‐El‐Haleem. Heavy metals bioremediation and water softening using ureolytic strains Metschnikowia pulcherrima and Raoultella planticola . J of Chemical Tech & Biotech 2021;96:3152
    https://doi.org/10.1002/jctb.6868
  23. Lijun Han, Jiangshan Li, Qiang Xue, Zhen Chen, Yaoyu Zhou, Chi Sun Poon. Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review. Science of The Total Environment 2020;746:140967
    https://doi.org/10.1016/j.scitotenv.2020.140967
  24. Chenxi Zhao, Qinglong Fu, Wenjuan Song, Daoyong Zhang, Jiaerheng Ahati, Xiangliang Pan, Fahad A. Al-Misned, M.Golam Mortuza. Calcifying cyanobacterium (Nostoc calcicola) reactor as a promising way to remove cadmium from water. Ecological Engineering 2015;81:107
    https://doi.org/10.1016/j.ecoleng.2015.04.012
  25. Xiangliang Pan, Varenyam Achal, Chenxi Zhao, Jianying Yang, Deepika Kumari. Twenty Years of Research and Development on Soil Pollution and Remediation in China. 2015.
    https://doi.org/10.1007/978-981-10-6029-8_28
  26. Periasamy Anbu, Chang-Ho Kang, Yu-Jin Shin, Jae-Seong So. Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus 2016;5
    https://doi.org/10.1186/s40064-016-1869-2
  27. Sriram Pradeep Saridhe, Thirumalini Selvaraj. Microbial precipitation of calcium carbonate in cementitious materials – A critical review. Materials Today: Proceedings 2021;43:1232
    https://doi.org/10.1016/j.matpr.2020.08.762
  28. Qianwei Li, Laszlo Csetenyi, Geoffrey Michael Gadd. Biomineralization of Metal Carbonates by Neurospora crassa. Environ. Sci. Technol. 2014;48:14409
    https://doi.org/10.1021/es5042546
  29. Bing Shan, Ruixia Hao, Hui Xu, Jiani Li, Yinhuang Li, Xiyang Xu, Junman Zhang. A review on mechanism of biomineralization using microbial-induced precipitation for immobilizing lead ions. Environ Sci Pollut Res 2021;28:30486
    https://doi.org/10.1007/s11356-021-14045-8
  30. Qianwei Li, Daoqing Liu, Chunmao Chen, Zhiguo Shao, Huazhen Wang, Jicheng Liu, Qiangbin Zhang, Geoffrey Michael Gadd. Experimental and geochemical simulation of nickel carbonate mineral precipitation by carbonate-laden ureolytic fungal culture supernatants. Environ. Sci.: Nano 2019;6:1866
    https://doi.org/10.1039/C9EN00385A
  31. Li-Jun Han, Jiang-Shan Li, Qiang Xue, Ming-Zhi Guo, Ping Wang, Chi Sun Poon. Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings. Construction and Building Materials 2022;314:125577
    https://doi.org/10.1016/j.conbuildmat.2021.125577
  32. Nasrin Ghorbanzadeh, Zahra Ghanbari, Mohammad Bagher Farhangi, Maryam Khalili Rad. Zinc bioremediation in soil by two isolated L-asparaginase and urease producing bacteria strains. Applied Geochemistry 2022;140:105271
    https://doi.org/10.1016/j.apgeochem.2022.105271
  33. Frédéric M. Lapierre, Jakob Schmid, Benjamin Ederer, Nina Ihling, Jochen Büchs, Robert Huber. Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Sci Rep 2020;10
    https://doi.org/10.1038/s41598-020-79904-9
  34. Arif Ali Baig Moghal, Mohammed Abdul Lateef, Syed Abu Sayeed Mohammed, Munir Ahmad, Adel R.A. Usman, Abdullah Almajed. Heavy Metal Immobilization Studies and Enhancement in Geotechnical Properties of Cohesive Soils by EICP Technique. Applied Sciences 2020;10:7568
    https://doi.org/10.3390/app10217568
  35. Xuejiao Zhu, Weila Li, Lu Zhan, Minsheng Huang, Qiuzhuo Zhang, Varenyam Achal. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environmental Pollution 2016;219:149
    https://doi.org/10.1016/j.envpol.2016.10.047
  36. Zhen-Ni Yang, Xiao-Min Li, Ahmad Umar, Wen-Hong Fan, Yao Wang. Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase. RSC Adv. 2016;6:29811
    https://doi.org/10.1039/C5RA26159G
  37. Surabhi Jain, D. N. Arnepalli. Geotechnical Characterisation and Geoenvironmental Engineering. 2016.
    https://doi.org/10.1007/978-981-13-0899-4_19
  38. Jiayue Zhao, Laszlo Csetenyi, Geoffrey Michael Gadd. Fungal-induced CaCO3 and SrCO3 precipitation: a potential strategy for bioprotection of concrete. Science of The Total Environment 2022;816:151501
    https://doi.org/10.1016/j.scitotenv.2021.151501
  39. Fusheng Zha, Hao Wang, Bo Kang, Congmin Liu, Long Xu, Xiaohui Tan. Improving the Strength and Leaching Characteristics of Pb-Contaminated Silt through MICP. Crystals 2021;11:1303
    https://doi.org/10.3390/cryst11111303
  40. Yunting Zheng, Chunqiao Xiao, Ruan Chi. Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review. World J Microbiol Biotechnol 2021;37
    https://doi.org/10.1007/s11274-021-03176-2
  41. Qianwei Li, Geoffrey Michael Gadd. Fungal nanoscale metal carbonates and production of electrochemical materials. Microb. Biotechnol. 2017;10:1131
    https://doi.org/10.1111/1751-7915.12765
  42. Dylan Proudfoot, Loran Brooks, Christopher H. Gammons, Edwin Barth, Diana Bless, Raja M. Nagisetty, Ellen G. Lauchnor. Investigating the potential for microbially induced carbonate precipitation to treat mine waste. Journal of Hazardous Materials 2022;424:127490
    https://doi.org/10.1016/j.jhazmat.2021.127490
  43. Fei Chen, Chunnuan Deng, Wenjuan Song, Daoyong Zhang, Fahad A. Al-Misned, M. Golam Mortuza, Geoffrey Michael Gadd, Xiangliang Pan. Biostabilization of Desert Sands Using Bacterially Induced Calcite Precipitation. Geomicrobiology Journal 2016;33:243
    https://doi.org/10.1080/01490451.2015.1053584
  44. Wah-Seng See-Too, Robson Ee, Yan-Lue Lim, Peter Convey, David A. Pearce, Taznim Begam Mohd Mohidin, Wai-Fong Yin, Kok Gan Chan. Complete genome of Arthrobacter alpinus strain R3.8, bioremediation potential unraveled with genomic analysis. Stand in Genomic Sci 2017;12
    https://doi.org/10.1186/s40793-017-0264-0
  45. Jiejie Lyu, Wen Qin, Chonghong Zhang, Fuchun Li. Nanoparticle Accumulation in Microbial Induced Carbonate Precipitation: The Crucial Role of Extracellular Polymeric Substance. Geomicrobiology Journal 2020;37:837
    https://doi.org/10.1080/01490451.2020.1786866
  46. Carla Cilliers, Evans M. N. Chirwa, Hendrik G. Brink. Insight into the Metabolic Profiles of Pb(II) Removing Microorganisms. Molecules 2021;26:4008
    https://doi.org/10.3390/molecules26134008
  47. Kai Xu, Yixin Peng, Ming Huang, Zijian Liu, Jiajie Zhen. Biocementation effect of high-efficiency urease-producing bacteria mutagenized from indigenous bacteria. IOP Conf. Ser.: Earth Environ. Sci. 2021;861:072104
    https://doi.org/10.1088/1755-1315/861/7/072104
  48. Muthusamy Govarthanan, Sung-Hee Park, Yool-Jin Park, Hyun Myung, R. R. Krishnamurthy, Sang-Hyun Lee, Nanh Lovanh, Seralathan Kamala-Kannan, Byung-Taek Oh. Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake extract in mine soil. RSC Adv. 2015;5:54564
    https://doi.org/10.1039/C5RA06945A
  49. Meghna Sharma, Neelima Satyam, Krishna R. Reddy. Strength Enhancement and Lead Immobilization of Sand Using Consortia of Bacteria and Blue-Green Algae. J. Hazard. Toxic Radioact. Waste 2020;24:04020049
    https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000548
  50. Nasrin Ghorbanzadeh, Samira Abduolrahimi, Akbar Forghani, Mohammad Bagher Farhangi. Bioremediation of cadmium in a sandy and a clay soil by microbially induced calcium carbonate precipitation after one week incubation. Arid Land Research and Management 2020;34:319
    https://doi.org/10.1080/15324982.2020.1720866
  51. Sudhakar Srivastava, Bunty Gupta. Immobilization Strategies. 2020.
    https://doi.org/10.1007/978-981-15-7998-1_17
  52. Guoquan Zeng, Suyu Qiao, Xitong Wang, Mingping Sheng, Mingyang Wei, Qun Chen, Heng Xu, Fei Xu. Immobilization of cadmium by Burkholderia sp. QY14 through modified microbially induced phosphate precipitation. Journal of Hazardous Materials 2021;412:125156
    https://doi.org/10.1016/j.jhazmat.2021.125156
  53. K. J. Osinubi, P. Yohanna, A. O. Eberemu, T. S. Ijimdiya. Proceedings of the 8th International Congress on Environmental Geotechnics Volume 3. 2021.
    https://doi.org/10.1007/978-981-13-2227-3_50
  54. . .
    https://doi.org/
  55. Varenyam Achal, Abhijit Mukherjee. A review of microbial precipitation for sustainable construction. Construction and Building Materials 2015;93:1224
    https://doi.org/10.1016/j.conbuildmat.2015.04.051
  56. Nafise Hosseini Balam, Davood Mostofinejad, Mohamadreza Eftekhar. Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials 2017;145:107
    https://doi.org/10.1016/j.conbuildmat.2017.04.003
  57. Jiejie Lyu, Fuchun Li, Chonghong Zhang, Laurie Gower, Scott Wasman, Jun Sun, Guoguo Yang, Jiani Chen, Lixin Gu, Xu Tang, Gary Scheiffele. From the inside out: Elemental compositions and mineral phases provide insights into bacterial calcification. Chemical Geology 2021;559:119974
    https://doi.org/10.1016/j.chemgeo.2020.119974
  58. Mark Vail, Cheng Zhu, Chao-Sheng Tang, Nate Maute, Melissa Tababa Montalbo-Lomboy. Desiccation Cracking Behavior of Clayey Soils Treated with Biocement and Bottom Ash Admixture during Wetting–Drying Cycles. Transportation Research Record 2020;2674:441
    https://doi.org/10.1177/0361198120924409
  59. Erin P. Argyilan, Peter G. Avis, Mark P.S. Krekeler, Charles C. Morris. The origin of collapse features appearing in a migrating parabolic dune along the southern coast of Lake Michigan. Aeolian Research 2015;19:137
    https://doi.org/10.1016/j.aeolia.2015.09.008
  60. Vinicius Luiz Pacheco, Lucimara Bragagnolo, Antonio Thomé. Artificial neural networks applied for solidified soils data prediction: a bibliometric and systematic review. EC 2021;38:3104
    https://doi.org/10.1108/EC-10-2020-0576
  61. Jianying Yang, Xiangliang Pan, Chenxi Zhao, Shuyong Mou, Varenyam Achal, Fahad A. Al-Misned, M. Golam Mortuza, Geoffrey Michael Gadd. Bioimmobilization of Heavy Metals in Acidic Copper Mine Tailings Soil. Geomicrobiology Journal 2016;33:261
    https://doi.org/10.1080/01490451.2015.1068889
  62. Xue Chen, Dan Zhang, Steven L. Larson, John H. Ballard, Heather M. Knotek-Smith, Jing Nie, Nan Hu, Dexin Ding, Fengxiang X. Han. Microbially Induced Carbonate Precipitation Techniques for the Remediation of Heavy Metal and Trace Element–Polluted Soils and Water. Water Air Soil Pollut 2021;232
    https://doi.org/10.1007/s11270-021-05206-z
  63. Ning-Jun Jiang, Rui Liu, Yan-Jun Du, Yu-Zhang Bi. Microbial induced carbonate precipitation for immobilizing Pb contaminants: Toxic effects on bacterial activity and immobilization efficiency. Science of The Total Environment 2019;672:722
    https://doi.org/10.1016/j.scitotenv.2019.03.294
  64. Joon-Ha Kim, Jai-Young Lee. An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal. J Mater Cycles Waste Manag 2019;21:239
    https://doi.org/10.1007/s10163-018-0779-5
  65. Wilson Mwandira, Kazunori Nakashima, Satoru Kawasaki. Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological Engineering 2017;109:57
    https://doi.org/10.1016/j.ecoleng.2017.09.011
  66. Loganathan Praburaman, Jung-Hee Park, Yool-Jin Park, Zhiguo He, S. Kamala-Kannan, Byung-Taek Oh. Effect of panchakavya (organic formulation) on phytoremediation of lead and zinc using Zea mays. Chemosphere 2020;246:125810
    https://doi.org/10.1016/j.chemosphere.2019.125810
  67. Nafise Hosseini Balam, Bahareh Tayebani, Davood Mostofinejad. Seawater Used as a Natural Medium for Curing Bacterially-Treated Concrete with Either Lightweight or Normal Weight Aggregates. J. Mater. Civ. Eng. 2021;33:04021216
    https://doi.org/10.1061/(ASCE)MT.1943-5533.0003857
  68. Marwa Eltarahony, Sahar Zaki, Desouky Abd-El-Haleem. Aerobic and anaerobic removal of lead and mercury via calcium carbonate precipitation mediated by statistically optimized nitrate reductases. Sci Rep 2020;10
    https://doi.org/10.1038/s41598-020-60951-1
  69. Salmabanu Luhar, Ismail Luhar, Faiz Uddin Ahmed Shaikh. A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. J. Compos. Sci. 2022;6:23
    https://doi.org/10.3390/jcs6010023
  70. Sonia M. Tiquia-Arashiro. Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Appl Microbiol Biotechnol 2018;102:5437
    https://doi.org/10.1007/s00253-018-8969-6
  71. Rehemanjiang Wufuer, Yongyang Wei, Qinghua Lin, Huawei Wang, Wenjuan Song, Wen Liu, Daoyong Zhang, Xiangliang Pan, Geoffrey Michael Gadd. . 2018.
    https://doi.org/10.1016/bs.aambs.2017.01.003
  72. Rahim Saffari, Ghassem Habibagahi, Ehsan Nikooee, Ali Niazi. Biological Stabilization of a Swelling Fine-Grained Soil: The Role of Microstructural Changes in the Shear Behavior. Iran J Sci Technol Trans Civ Eng 2017;41:405
    https://doi.org/10.1007/s40996-017-0066-z
  73. Diana P. Tamayo-Figueroa, Elianna Castillo, Pedro F. B. Brandão. Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World J Microbiol Biotechnol 2019;35
    https://doi.org/10.1007/s11274-019-2626-9
  74. Changning Li, Haiyun Li, Tuo Yao, Ming Su, Fu Ran, Jianhong Li, Li He, Xin Chen, Chen Zhang, Huizhen Qiu. Effects of swine manure composting by microbial inoculation: Heavy metal fractions, humic substances, and bacterial community metabolism. Journal of Hazardous Materials 2021;415:125559
    https://doi.org/10.1016/j.jhazmat.2021.125559
  75. Giovanni Ganendra, Willem De Muynck, Adrian Ho, Eleni Charalampous Arvaniti, Baharak Hosseinkhani, Jose Angel Ramos, Hubert Rahier, Nico Boon, J. E. Kostka. Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP. Appl Environ Microbiol 2014;80:4659
    https://doi.org/10.1128/AEM.01349-14
  76. K. J. Osinubi, A. O. Eberemu, T. S. Ijimdiya, S. E. Yakubu, E. W. Gadzama, J. E. Sani, P. Yohanna. Review of the use of microorganisms in geotechnical engineering applications. SN Appl. Sci. 2020;2
    https://doi.org/10.1007/s42452-020-1974-2
  77. Changming Bu, Xinyu Lu, Dongxu Zhu, Lei Liu, Yi Sun, Qiutong Wu, Wentao Zhang, Qike Wei. Soil improvement by microbially induced calcite precipitation (MICP): a review about mineralization mechanism, factors, and soil properties. Arab J Geosci 2022;15
    https://doi.org/10.1007/s12517-022-10012-w
  78. Grainne El Mountassir, James M. Minto, Leon A. van Paassen, Emmanuel Salifu, Rebecca J. Lunn. . 2022.
    https://doi.org/10.1016/bs.aambs.2018.05.001
  79. Deepika Kumari, Xiangliang Pan, Varenyam Achal, Daoyong Zhang, Fahad A. Al-Misned, M. Golam Mortuza. Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environ Earth Sci 2015;74:3113
    https://doi.org/10.1007/s12665-015-4349-z
  80. Mingyue Wu, Xiangming Hu, Qian Zhang, Weimin Cheng, Di Xue, Yanyun Zhao. Application of bacterial spores coated by a green inorganic cementitious material for the self-healing of concrete cracks. Cement and Concrete Composites 2020;113:103718
    https://doi.org/10.1016/j.cemconcomp.2020.103718
  81. Surabhi Jain, Chaolin Fang, Varenyam Achal. A critical review on microbial carbonate precipitation via denitrification process in building materials. Bioengineered 2021;12:7529
    https://doi.org/10.1080/21655979.2021.1979862
  82. Mostafa Seifan, Aydin Berenjian. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Appl Microbiol Biotechnol 2019;103:4693
    https://doi.org/10.1007/s00253-019-09861-5
  83. Monica Rigoletto, Paola Calza, Elisa Gaggero, Mery Malandrino, Debora Fabbri. Bioremediation Methods for the Recovery of Lead-Contaminated Soils: A Review. Applied Sciences 2020;10:3528
    https://doi.org/10.3390/app10103528
  84. Dayana Arias, Luis A. Cisternas, Mariella Rivas. Biomineralization of calcium and magnesium crystals from seawater by halotolerant bacteria isolated from Atacama Salar (Chile). Desalination 2017;405:1
    https://doi.org/10.1016/j.desal.2016.11.027
  85. Jeremiah Chimhundi, Carla Hörstmann, Evans M. N. Chirwa, Hendrik G. Brink. Microbial Removal of Pb(II) Using an Upflow Anaerobic Sludge Blanket (UASB) Reactor. Catalysts 2021;11:512
    https://doi.org/10.3390/catal11040512
  86. Wangqing Xu, Junjie Zheng, Jian Chu, Rongjun Zhang, Mingjuan Cui, Hanjiang Lai, Chen Zeng. New method for using N-(N-butyl)-thiophosphoric triamide to improve the effect of microbial induced carbonate precipitation. Construction and Building Materials 2021;313:125490
    https://doi.org/10.1016/j.conbuildmat.2021.125490
  87. Meghna Sharma, Neelima Satyam, Krishna R. Reddy. Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions. Engineering Geology 2021;284:106022
    https://doi.org/10.1016/j.enggeo.2021.106022