JMB

Cited by CrossRef (55)

  1. Judith Becker, Christoph Wittmann. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Current Opinion in Biotechnology 2012;23:718
    https://doi.org/10.1016/j.copbio.2011.12.025
  2. Ngoc Lan Mai, Yoon-Mo Koo. Enhanced enzyme-catalyzed synthesis of l-methionine with ionic liquid additives. Process Biochemistry 2019;77:31
    https://doi.org/10.1016/j.procbio.2018.11.020
  3. Judith Becker, Christoph Wittmann. Industrial Biotechnology. 2019.
    https://doi.org/10.1002/9783527807796.ch6
  4. Yongkun Lv, Jinmian Chang, Weiping Zhang, Hanyu Dong, Song Chen, Xian Wang, Anqi Zhao, Shen Zhang, Md. Asraful Alam, Shilei Wang, Chaojun Du, Jingliang Xu, Weigao Wang, Peng Xu. Improving Microbial Cell Factory Performance by Engineering SAM Availability. J. Agric. Food Chem. 2024;72:3846
    https://doi.org/10.1021/acs.jafc.3c09561
  5. Nurije Mustafi, Alexander Grünberger, Dietrich Kohlheyer, Michael Bott, Julia Frunzke. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metabolic Engineering 2012;14:449
    https://doi.org/10.1016/j.ymben.2012.02.002
  6. Tobias J Erb, Bradley S Evans, Kyuil Cho, Benjamin P Warlick, Jaya Sriram, B McKay Wood, Heidi J Imker, Jonathan V Sweedler, F Robert Tabita, John A Gerlt. A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat Chem Biol 2012;8:926
    https://doi.org/10.1038/nchembio.1087
  7. Thomas Willke. Methionine production—a critical review. Appl Microbiol Biotechnol 2014;98:9893
    https://doi.org/10.1007/s00253-014-6156-y
  8. Judith Becker, Christoph Wittmann. Advanced Biotechnology: Metabolically Engineered Cells for the Bio‐Based Production of Chemicals and Fuels, Materials, and Health‐Care Products. Angew Chem Int Ed 2015;54:3328
    https://doi.org/10.1002/anie.201409033
  9. Judith Becker, Christoph Wittmann. Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Current Opinion in Biotechnology 2012;23:631
    https://doi.org/10.1016/j.copbio.2011.11.012
  10. Agnieszka Sekowska, Hiroki Ashida, Antoine Danchin. Revisiting the methionine salvage pathway and its paralogues. Microbial Biotechnology 2019;12:77
    https://doi.org/10.1111/1751-7915.13324
  11. Xiu-Xia Liu, Ye Li, Zhong-Hu Bai. Microbial Cell Factories Engineering for Production of Biomolecules. 2019.
    https://doi.org/10.1016/B978-0-12-821477-0.00006-4
  12. Matteo P. Ferla, Wayne M. Patrick. Bacterial methionine biosynthesis. 2014;160:1571
    https://doi.org/10.1099/mic.0.077826-0
  13. Masato Ikeda, Seiki Takeno. Corynebacterium glutamicum. 2014.
    https://doi.org/10.1007/978-3-030-39267-3_7
  14. Michael K. F. Mohr, Patricia Benčić, Jennifer N. Andexer. Doping In Vivo Alkylation in E. coli by Introducing the Direct Sulfurylation Pathway of S. cerevisiae. Angewandte Chemie 2025;137
    https://doi.org/10.1002/ange.202414598
  15. Ru Sun, Qunliang Li. Exogenous additive ferric sulfate regulates sulfur-oxidizing bacteria in cow manure composting to promote carbon fixation. Environ Sci Pollut Res 2024;31:32212
    https://doi.org/10.1007/s11356-024-33417-4
  16. Jean Marie François. Progress advances in the production of bio-sourced methionine and its hydroxyl analogues. Biotechnology Advances 2023;69:108259
    https://doi.org/10.1016/j.biotechadv.2023.108259
  17. Michael K. F. Mohr, Patricia Benčić, Jennifer N. Andexer. Doping In Vivo Alkylation in E. coli by Introducing the Direct Sulfurylation Pathway of S. cerevisiae. Angew Chem Int Ed 2025;64
    https://doi.org/10.1002/anie.202414598
  18. Guoqiang Han, Xiaoqing Hu, Tianyu Qin, Ye Li, Xiaoyuan Wang. Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S -adenosyl- l -methionine. Enzyme and Microbial Technology 2016;83:14
    https://doi.org/10.1016/j.enzmictec.2015.11.001
  19. Judith Becker, Stefanie Kind, Christoph Wittmann. Systems Metabolic Engineering. 2016.
    https://doi.org/10.1007/978-94-007-4534-6_6
  20. Judith Becker, Christoph Wittmann. Metabolic Engineering. 2016.
    https://doi.org/10.1002/9783527823468.ch12
  21. Jin-Ho Lee. Handbook of Biorefinery Research and Technology. 2016.
    https://doi.org/10.1007/978-94-007-6724-9_15-1
  22. V. V. Kulikova, E. A. Morozova, A. D. Lyfenko, V. S. Koval, N. V. Anufrieva, P. N. Solyev, S. V. Revtovich. O-Acetylhomoserine Sulfhydrylase As a Key Enzyme of Direct Sulfhydrylation in Microbial Methionine Biosynthesis (A Review). Appl Biochem Microbiol 2024;60:359
    https://doi.org/10.1134/S0003683824603561
  23. Bingnan Liu, Xinyu Sun, Yue Liu, Mengmeng Yang, Liang Wang, Ying Li, Jihui Wang. Increased NADPH Supply Enhances Glycolysis Metabolic Flux and L-methionine Production in Corynebacterium glutamicum. Foods 2022;11:1031
    https://doi.org/10.3390/foods11071031
  24. Daniel P. Smith, Carrie D. Nicora, Paul Carini, Mary S. Lipton, Angela D. Norbeck, Richard D. Smith, Stephen J. Giovannoni, Paul Wilmes. Proteome Remodeling in Response to Sulfur Limitation in “ Candidatus Pelagibacter ubique” . mSystems 2016;1
    https://doi.org/10.1128/mSystems.00068-16
  25. Judith Becker, Christoph Wittmann. Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio‐basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angewandte Chemie 2015;127:3383
    https://doi.org/10.1002/ange.201409033
  26. Kristina Hoffmann, Alexander Grünberger, Frank Lausberg, Michael Bott, Lothar Eggeling. Visualization of Imbalances in Sulfur Assimilation and Synthesis of Sulfur-Containing Amino Acids at the Single-Cell Level. Appl Environ Microbiol 2013;79:6730
    https://doi.org/10.1128/AEM.01804-13
  27. Hui Wang, Yujie Li, Yixin Che, Dongmei Yang, Qi Wang, Huaqing Yang, Julien Boutet, Robert Huet, Sheng Yin. Production of l-Methionine from 3-Methylthiopropionaldehyde and O-Acetylhomoserine by Catalysis of the Yeast O-Acetylhomoserine Sulfhydrylase. J. Agric. Food Chem. 2021;69:7932
    https://doi.org/10.1021/acs.jafc.1c02419
  28. Lennart Leßmeier, Volker F. Wendisch. Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol 2015;15
    https://doi.org/10.1186/s12866-015-0558-6
  29. Yu Wang, Liwen Fan, Philibert Tuyishime, Jiao Liu, Kun Zhang, Ning Gao, Zhihui Zhang, Xiaomeng Ni, Jinhui Feng, Qianqian Yuan, Hongwu Ma, Ping Zheng, Jibin Sun, Yanhe Ma. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun Biol 2020;3
    https://doi.org/10.1038/s42003-020-0954-9
  30. Vitalia V. Kulikova, Natalya V. Anufrieva, Elena A. Morozova, Marat M. Khisamov, Yaroslav V. Tkachev, Mikhail I. Kotlov, Yury F. Belyi, Vasiliy S. Koval, Svetlana V. Revtovich, Pavel N. Solyev. Revealing O-acetylhomoserine sulfhydrylase involved in direct sulfhydrylation pathway in Clostridium tetani. Biochimie 2024
    https://doi.org/10.1016/j.biochi.2024.12.014
  31. Deep Mohan Mahala, Hemant S. Maheshwari, Rajendra Kumar Yadav, B. Jeberlin Prabina, Abhishek Bharti, Kiran K. Reddy, Chiranjeev Kumawat, Aketi Ramesh. Rhizosphere Microbes. 2024.
    https://doi.org/10.1007/978-981-15-9154-9_7
  32. Christian Lange, Nurije Mustafi, Julia Frunzke, Nicole Kennerknecht, Mirja Wessel, Michael Bott, Volker F. Wendisch. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. Journal of Biotechnology 2012;158:231
    https://doi.org/10.1016/j.jbiotec.2011.06.003
  33. Sophia Belkhelfa, David Roche, Ivan Dubois, Anne Berger, Valérie A. Delmas, Laurence Cattolico, Alain Perret, Karine Labadie, Aude C. Perdereau, Ekaterina Darii, Emilie Pateau, Véronique de Berardinis, Marcel Salanoubat, Madeleine Bouzon, Volker Döring. Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations. Front. Microbiol. 2019;10
    https://doi.org/10.3389/fmicb.2019.01313
  34. Masato Ikeda, Seiki Takeno. Corynebacterium glutamicum. 2019.
    https://doi.org/10.1007/978-3-642-29857-8_4
  35. Judith Becker, Christina Maria Rohles, Christoph Wittmann. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metabolic Engineering 2018;50:122
    https://doi.org/10.1016/j.ymben.2018.07.008
  36. Jean Marie François. HOW WHITE BIOTECHNOLOGY CAN CONTRIBUTE TO BIOECONOMY?. EEEP 2022;2022:5
    https://doi.org/10.32006/eeep.2022.2.0517
  37. Diethard Mattanovich, Pablo Ivan Nikel, Sabrina Wolf, Judith Becker, Yota Tsuge, Hideo Kawaguchi, Akihiko Kondo, Jan Marienhagen, Michael Bott, Volker F. Wendisch, Christoph Wittmann. Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. 2021;65:197
    https://doi.org/10.1042/EBC20200134
  38. Zhongcai Li, Qian Liu, Jiahui Sun, Jianjian Sun, Mingjie Li, Yun Zhang, Aihua Deng, Shuwen Liu, Tingyi Wen. Multivariate modular metabolic engineering for enhanced l-methionine biosynthesis in Escherichia coli. Biotechnol Biofuels 2023;16
    https://doi.org/10.1186/s13068-023-02347-7
  39. Joseph S. Wirth, Tao Wang, Qiuyuan Huang, Robert H. White, William B. Whitman, Douglas G. Capone. Dimethylsulfoniopropionate Sulfur and Methyl Carbon Assimilation inRuegeriaSpecies. mBio 2020;11
    https://doi.org/10.1128/mBio.00329-20
  40. Ali Mott, Raquibul Alam, Wonjae Chang, Kerry McPhedran. Investigation of Bioremediation of Arsenic-Contaminated Mine Waste Rock Water in a Challenging Low Temperature and Ph Anaerobic Environment. SSRN Journal 2022
    https://doi.org/10.2139/ssrn.4022069
  41. Jens Christmann, Peng Cao, Judith Becker, Christian K. Desiderato, Oliver Goldbeck, Christian U. Riedel, Michael Kohlstedt, Christoph Wittmann. High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microb Cell Fact 2023;22
    https://doi.org/10.1186/s12934-023-02044-y
  42. Jin-Ho Lee. Handbook of Biorefinery Research and Technology: Production of Biofuels and Biochemicals. 2023.
    https://doi.org/10.1007/978-981-97-7586-6_15
  43. V. V. Kulikova, E. A. Morozova, A. D. Lyfenko, V. S. Koval, N. V. Anufrieva, P. N. Solyev, S. V. Revtovich. O-Acetylhomoserine Sulfhydrylase as a Key Enzyme of Direct Sulfhydrylation in Microbial Methionine Biosynthesis. Prikladnaâ biohimiâ i mikrobiologiâ 2024;60:221
    https://doi.org/10.31857/S0555109924030017
  44. Man Zhao, Wenyi Wang, Lei Wei, Peng Chen, Fengjie Yuan, Zhao Wang, Xiangxian Ying. Molecular evolution and expression divergence of three key Met biosynthetic genes in plants:CGS,HMTandMMT. 2018;6:e6023
    https://doi.org/10.7717/peerj.6023
  45. Priya Shukla, Pradeep Srivastava, Abha Mishra. Industrial Microbiology and Biotechnology. 2018.
    https://doi.org/10.1007/978-981-99-2816-3_7
  46. Jihyun Shim, Yonguk Shin, Imsang Lee, So Young Kim. Amino Acid Fermentation. 2018.
    https://doi.org/10.1007/10_2016_30
  47. Jennifer Scott, Monica Sueiro-Olivares, Waqar Ahmed, Christoph Heddergott, Can Zhao, Riba Thomas, Michael Bromley, Jean-Paul Latgé, Sven Krappmann, Stephen Fowler, Elaine Bignell, Jorge Amich. Pseudomonas aeruginosa-Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection. Front. Microbiol. 2019;10
    https://doi.org/10.3389/fmicb.2019.02311
  48. Christian Johannes Schipp, Ying Ma, Ammar Al‐Shameri, Federico D'Alessio, Peter Neubauer, Roberto Contestabile, Nediljko Budisa, Martino Luigi di Salvo. An Engineered Escherichia coli Strain with Synthetic Metabolism for in‐Cell Production of Translationally Active Methionine Derivatives. ChemBioChem 2020;21:3525
    https://doi.org/10.1002/cbic.202000257
  49. Ying Ma, Hernán Biava, Roberto Contestabile, Nediljko Budisa, Martino Di Salvo. Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins. Molecules 2014;19:1004
    https://doi.org/10.3390/molecules19011004
  50. Christian Rückert. Sulfate reduction in microorganisms — recent advances and biotechnological applications. Current Opinion in Microbiology 2016;33:140
    https://doi.org/10.1016/j.mib.2016.07.007
  51. Andreas Schwentner, André Feith, Eugenia Münch, Judith Stiefelmaier, Ira Lauer, Lorenzo Favilli, Christoph Massner, Johannes Öhrlein, Bastian Grund, Andrea Hüser, Ralf Takors, Bastian Blombach. Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum. Biotechnol Biofuels 2019;12
    https://doi.org/10.1186/s13068-019-1410-2
  52. Stefanie Kind, Steffen Kreye, Christoph Wittmann. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metabolic Engineering 2011;13:617
    https://doi.org/10.1016/j.ymben.2011.07.006
  53. Nele Buschke, Hartwig Schröder, Christoph Wittmann. Metabolic engineering of Corynebacterium glutamicum for production of 1,5‐diaminopentane from hemicellulose. Biotechnology Journal 2011;6:306
    https://doi.org/10.1002/biot.201000304
  54. Judith Becker, Christoph Wittmann. Corynebacterium glutamicum. 2011.
    https://doi.org/10.1007/978-3-030-39267-3_8
  55. Christina Maria Rohles, Gideon Gießelmann, Michael Kohlstedt, Christoph Wittmann, Judith Becker. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microb Cell Fact 2016;15
    https://doi.org/10.1186/s12934-016-0553-0