JMB

Cited by CrossRef (183)

  1. Kihyun Kim, Yoonji Lee, Areum Ha, Ji-In Kim, Ae Ran Park, Nan Hee Yu, Hokyoung Son, Gyung Ja Choi, Hae Woong Park, Chul Won Lee, Theresa Lee, Yin-Won Lee, Jin-Cheol Kim. Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12. Front. Plant Sci. 2017;8
    https://doi.org/10.3389/fpls.2017.02010
  2. T.P. Pirog, L.V. Kliuchka, T.A. Shevchuk, F.V. Muchnyk. Interrelation of Chemical Composition and Biological Properties of Microbial Surfactants. Mikrobiol. Z. 2019;81:84
    https://doi.org/10.15407/microbiolj81.03.084
  3. Mustafa E. Marti, William J. Colonna, Gabriel Reznik, Michelle Pynn, Kevin Jarrell, Buddhi Lamsal, Charles E. Glatz. Production of fatty-acyl-glutamate biosurfactant by Bacillus subtilis on soybean co-products. Biochemical Engineering Journal 2015;95:48
    https://doi.org/10.1016/j.bej.2014.11.011
  4. Katia Cristina Kupper, Rafael Kupper Moretto, Andreia Fujimoto. Production of antifungal compounds by Bacillus spp. isolates and its capacity for controlling citrus black spot under field conditions. World J Microbiol Biotechnol 2020;36
    https://doi.org/10.1007/s11274-019-2772-0
  5. Judia Magthalin Christopher, Rajalakshmi Sridharan, Swarnalatha Somasundaram, Sekaran Ganesan. Bioremediation of aromatic hydrocarbons contaminated soil from industrial site using surface modified amino acid enhanced biosurfactant. Environmental Pollution 2021;289:117917
    https://doi.org/10.1016/j.envpol.2021.117917
  6. Ria Rautela, Anil Kumar Singh, Abha Shukla, Swaranjit Singh Cameotra. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie van Leeuwenhoek 2014;105:809
    https://doi.org/10.1007/s10482-014-0135-2
  7. Tanumoy Sarkar, Monikha Chetia, Sunanda Chatterjee. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Laboratory and Beyond. Front. Chem. 2021;9
    https://doi.org/10.3389/fchem.2021.691532
  8. Ankit Kumar, B. N. Johri. Microorganisms in Sustainable Agriculture and Biotechnology. 2021.
    https://doi.org/10.1007/978-94-007-2214-9_6
  9. Moh Tariq, Amir Khan, Mohd Asif, Faryad Khan, Taruba Ansari, Mohammad Shariq, Mansoor A. Siddiqui. Biological control: a sustainable and practical approach for plant disease management. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 2020;70:507
    https://doi.org/10.1080/09064710.2020.1784262
  10. Jing Wang, Chao Liu, Hong-Gang Hu, Yan Zou, Qin-Jie Zhao, Guang-Ming Ye. Total Synthesis of Cyclic Lipodepsipeptide Ophiotine. Chem Nat Compd 2020;56:883
    https://doi.org/10.1007/s10600-020-03175-z
  11. Divya B. Tripathy, Anuradha Mishra, James Clark, Thomas Farmer. Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review. Comptes Rendus Chimie 2018;21:112
    https://doi.org/10.1016/j.crci.2017.11.005
  12. M.B. Gomes, E.E. Gonzales-Limache, S.T.P. Sousa, B.M. Dellagnezze, A. Sartoratto, L.C.F. Silva, L.M. Gieg, E. Valoni, R.S. Souza, A.P.R. Torres, M.P. Sousa, S.O. De Paula, C.C. Silva, V.M. Oliveira. Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. International Biodeterioration & Biodegradation 2018;126:231
    https://doi.org/10.1016/j.ibiod.2016.08.014
  13. Amel El Arbi, Alice Rochex, Gabrielle Chataigné, Max Béchet, Didier Lecouturier, Ségolène Arnauld, Néji Gharsallah, Philippe Jacques. The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Research in Microbiology 2016;167:46
    https://doi.org/10.1016/j.resmic.2015.09.003
  14. Hua Yue, Juan Zhong, Zhemin Li, Jinyan Zhou, Jie Yang, Hongfei Wei, Dan Shu, Di Luo, Hong Tan. Optimization of iturin A production from Bacillus subtilis ZK-H2 in submerge fermentation by response surface methodology. 3 Biotech 2021;11
    https://doi.org/10.1007/s13205-020-02540-7
  15. Prity Kushwaha, Prem Lal Kashyap, Alok Kumar Srivastava, Rajesh Kumar Tiwari. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol 2020;51:229
    https://doi.org/10.1007/s42770-019-00172-5
  16. Narayanappa Amruta, M. K. Prasanna Kumar, M. E. Puneeth, Gowdiperu Sarika, Hemanth Kumar Kandikattu, K. Vishwanath, Sonnappa Narayanaswamy. Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae. Plant Pathol J 2018;34:126
    https://doi.org/10.5423/PPJ.OA.11.2017.0242
  17. Aikaterini A. Mazioti, Marlen I. Vasquez, Ioannis Vyrides. Comparison of different cultures and culturing conditions for the biological deterioration of organic load from real saline bilge wastewater: microbial diversity insights and ecotoxicity assessment. Environ Sci Pollut Res 2021;28:36506
    https://doi.org/10.1007/s11356-021-13153-9
  18. Jinhua Cheng, Kumar Sagar Jaiswal, Seung Hwan Yang, Joo-Won Suh. EndophyticBacillus subtilisMJMP2 from Kimchi inhibitsXanthomonas oryzaepv.oryzae, the pathogen of Rice bacterial blight disease. JABC 2016;59:149
    https://doi.org/10.3839/jabc.2016.027
  19. S. Nakkeeran, S. Vinodkumar, P. Renukadevi, S. Rajamanickam, Sudisha Jogaiah. Bioactive Molecules in Plant Defense. 2016.
    https://doi.org/10.1007/978-3-030-27165-7_1
  20. K. L. Sajitha, Suma Arun Dev, E. J. Maria Florence. Identification and Characterization of Lipopeptides from Bacillus subtilis B1 Against Sapstain Fungus of Rubberwood Through MALDI-TOF-MS and RT-PCR. Curr Microbiol 2016;73:46
    https://doi.org/10.1007/s00284-016-1025-9
  21. Izzah Shahid, Samina Mehnaz. Microbial Services in Restoration Ecology. 2016.
    https://doi.org/10.1016/B978-0-12-819978-7.00004-X
  22. Hiroshi Habe, Toshiaki Taira, Tomohiro Imura. Screening of a Bacillus subtilis Strain Producing Multiple Types of Cyclic Lipopeptides and Evaluation of Their Surface-tension-lowering Activities. J. Oleo Sci. 2017;66:785
    https://doi.org/10.5650/jos.ess17039
  23. Nubia Noemi Cob-Calan, Luz America Chi-Uluac, Filiberto Ortiz-Chi, Daniel Cerqueda-García, Gabriel Navarrete-Vázquez, Esaú Ruiz-Sánchez, Emanuel Hernández-Núñez. Molecular Docking and Dynamics Simulation of Protein β-Tubulin and Antifungal Cyclic Lipopeptides. Molecules 2019;24:3387
    https://doi.org/10.3390/molecules24183387
  24. Junthip Thongjun, Natta Tansila, Kanda Panthong, Somporn Tanskul, Mitsuaki Nishibuchi, Varaporn Vuddhakul. Inhibitory potential of biosurfactants from Bacillus amyloliquefaciens derived from mangrove soil against Vibrio parahaemolyticus. Ann Microbiol 2016;66:1257
    https://doi.org/10.1007/s13213-016-1216-4
  25. Xuechao Zhang, Xiaomeng Chen, Xinlei Qiao, Xuerui Fan, Xiaoyi Huo, Dongdong Zhang. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z‐14 active against wheat take‐all caused by Gaeumannomyces graminis var. tritici . J. Sep. Sci. 2021;44:931
    https://doi.org/10.1002/jssc.201901274
  26. Ling Gao, Jinzhi Han, Hongxia Liu, Xiaoxu Qu, Zhaoxin Lu, Xiaomei Bie. Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Antonie van Leeuwenhoek 2017;110:1007
    https://doi.org/10.1007/s10482-017-0874-y
  27. Satya Eswari Jujjavarapu, Swasti Dhagat. In Silico Discovery of Novel Ligands for Antimicrobial Lipopeptides for Computer-Aided Drug Design. Probiotics & Antimicro. Prot. 2018;10:129
    https://doi.org/10.1007/s12602-017-9356-9
  28. Paulina Vignatti, María E. Gonzalez, Edgardo C. Jofré, Hernando J. Bolívar-Anillo, Javier Moraga, Muriel Viaud, Isidro G. Collado, Fernando L. Pieckenstain. Botrydial confers Botrytis cinerea the ability to antagonize soil and phyllospheric bacteria. Fungal Biology 2020;124:54
    https://doi.org/10.1016/j.funbio.2019.11.003
  29. Yuan Su, Chuan Liu, Huan Fang, Dawei Zhang. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020;19
    https://doi.org/10.1186/s12934-020-01436-8
  30. Stephen A. Cochrane, John C. Vederas. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Med. Res. Rev. 2016;36:4
    https://doi.org/10.1002/med.21321
  31. Chandra Datta Sumi, Byung Wook Yang, In-Cheol Yeo, Young Tae Hahm. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol. 2015;61:93
    https://doi.org/10.1139/cjm-2014-0613
  32. Seiichi Furuya, Mai Mochizuki, Yoshinao Aoki, Hironori Kobayashi, Tsutomu Takayanagi, Masafumi Shimizu, Shunji Suzuki. Isolation and characterization ofBacillus subtilisKS1 for the biocontrol of grapevine fungal diseases. Biocontrol Science and Technology 2011;21:705
    https://doi.org/10.1080/09583157.2011.574208
  33. Hesty Heryani, Meilana Dharma Putra. Kinetic study and modeling of biosurfactant production using Bacillus sp.. Electronic Journal of Biotechnology 2017;27:49
    https://doi.org/10.1016/j.ejbt.2017.03.005
  34. Diana Gimenez, Aoife Phelan, Cormac D. Murphy, Steven L. Cobb. Fengycin A Analogues with Enhanced Chemical Stability and Antifungal Properties. Org. Lett. 2021;23:4672
    https://doi.org/10.1021/acs.orglett.1c01387
  35. Shatrohan Lal, Sheel Ratna, Olfa Ben Said, Rajesh Kumar. Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: An advancement in metal phytoremediation technology. Environmental Technology & Innovation 2018;10:243
    https://doi.org/10.1016/j.eti.2018.02.011
  36. Tomasz Janek, Lígia R. Rodrigues, Żaneta Czyżnikowska. Study of metal-lipopeptide complexes and their self-assembly behavior, micelle formation, interaction with bovine serum albumin and biological properties. Journal of Molecular Liquids 2018;268:743
    https://doi.org/10.1016/j.molliq.2018.07.118
  37. Karla J. Perez, Jaime dos Santos Viana, Fernanda C. Lopes, Jamile Q. Pereira, Daniel M. dos Santos, Jamil S. Oliveira, Renata V. Velho, Silvia M. Crispim, Jacques R. Nicoli, Adriano Brandelli, Regina M. D. Nardi. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides. Front. Microbiol. 2017;8
    https://doi.org/10.3389/fmicb.2017.00061
  38. Wenjie Xia, Lihua Tong, Tianzhi Jin, Cuxiao Hu, Lu Zhang, Lei Shi, Jiaqiang Zhang, Weichu Yu, Fuyi Wang, Ting Ma. N,S-Heterocycles biodegradation and biosurfactantproduction under CO2/N2 conditions by Pseudomonas and its application on heavy oil recovery. Chemical Engineering Journal 2021;413:128771
    https://doi.org/10.1016/j.cej.2021.128771
  39. Yanli Ren, Jinyan Zhou, Xiaoyong Zhang, Zhidong Li, Juan Zhong, Jie Yang, Tan Xu, Hong Tan. Analysis of free amino acids during fermentation by Bacillus subtilis using capillary electrophoresis. Biotechnol Bioproc E 2012;17:1244
    https://doi.org/10.1007/s12257-012-0292-y
  40. N. Arbsuwan, P. Sirithorn, S. Daduang, A. Dhiravisit, S. Thammasirirak. Purification and characterization of antimicrobial substances from Bacillus licheniformis BFP011. Appl Biochem Microbiol 2014;50:580
    https://doi.org/10.1134/S0003683814110015
  41. Naveen Kumar Arora, Sakshi Tewari, Rachna Singh. Plant Microbe Symbiosis: Fundamentals and Advances. 2014.
    https://doi.org/10.1007/978-81-322-1287-4_16
  42. Amna Shoaib, Zoia Arshad Awan, Kashif Ali Khan. Intervention of antagonistic bacteria as a potential inducer of disease resistance in tomato to mitigate early blight. Scientia Horticulturae 2019;252:20
    https://doi.org/10.1016/j.scienta.2019.02.073
  43. Yulei Dang, Fengjie Zhao, Xiangsheng Liu, Xu Fan, Rui Huang, Weixia Gao, Shufang Wang, Chao Yang. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact 2019;18
    https://doi.org/10.1186/s12934-019-1121-1
  44. Noor Akbar, Ruqaiyyah Siddiqui, Mazhar Iqbal, Kuppusamy Sagathevan, Kwang Sik Kim, Fazal Habib, Naveed Ahmed Khan. Gut Bacteria of Rattus rattus (Rat) Produce Broad-Spectrum Antibacterial Lipopeptides. ACS Omega 2021;6:12261
    https://doi.org/10.1021/acsomega.1c01137
  45. Haohao Yan, Yue Qiu, Shuai Yang, Yongqiang Wang, Kaiyun Wang, Lili Jiang, Hongyan Wang. Antagonistic Activity of Bacillus velezensis SDTB038 against Phytophthora infestans in Potato. Plant Disease 2021:PDIS-08-20-1666
    https://doi.org/10.1094/PDIS-08-20-1666-RE
  46. Gabriela Seydlová, Radovan Fišer, Radomír Čabala, Petr Kozlík, Jaroslava Svobodová, Miroslav Pátek. Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis. Biochimica et Biophysica Acta (BBA) - Biomembranes 2013;1828:2370
    https://doi.org/10.1016/j.bbamem.2013.06.032
  47. Youwei He, Manli Zhu, Junbin Huang, Tom Hsiang, Lu Zheng. Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Canadian Journal of Plant Pathology 2019;41:47
    https://doi.org/10.1080/07060661.2018.1564792
  48. Dorra Ben Abdallah, Slim Tounsi, Houda Gharsallah, Adnane Hammami, Olfa Frikha-Gargouri. Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens. Environ Sci Pollut Res 2018;25:36518
    https://doi.org/10.1007/s11356-018-3570-1
  49. Rashmi Sharma, Minakshi, Anjali Chauhan. Mining of Microbial Wealth and MetaGenomics. 2018.
    https://doi.org/10.1007/978-981-10-5708-3_3
  50. L. Rodríguez-López, M. Rincón-Fontán, X. Vecino, J.M. Cruz, A.B. Moldes. Extraction, separation and characterization of lipopeptides and phospholipids from corn steep water. Separation and Purification Technology 2020;248:117076
    https://doi.org/10.1016/j.seppur.2020.117076
  51. Xin Zhao, Zhi-jiang Zhou, Ye Han, Zhan-zhong Wang, Jie Fan, Hua-zhi Xiao. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiological Research 2013;168:598
    https://doi.org/10.1016/j.micres.2013.03.001
  52. Shuzhen Lei, Haobin Zhao, Bing Pang, Rui Qu, Ziyang Lian, Chunmei Jiang, Dongyan Shao, Qingsheng Huang, Mingliang Jin, Junling Shi. Capability of iturin from Bacillus subtilis to inhibit Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol 2019;103:4377
    https://doi.org/10.1007/s00253-019-09805-z
  53. Xingxing Kang, Wanling Zhang, Xunchao Cai, Tong Zhu, Yarong Xue, Changhong Liu. Bacillus velezensis CC09: A Potential ‘Vaccine’ for Controlling Wheat Diseases. MPMI 2018;31:623
    https://doi.org/10.1094/MPMI-09-17-0227-R
  54. Niran Roongsawang, Kenji Washio, Masaaki Morikawa. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants. IJMS 2010;12:141
    https://doi.org/10.3390/ijms12010141
  55. Goutam Dey, Rashmi Bharti, Gunaseelan Dhanarajan, Subhasis Das, Kaushik Kumar Dey, B N Prashanth Kumar, Ramkrishna Sen, Mahitosh Mandal. Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer. Sci Rep 2015;5
    https://doi.org/10.1038/srep10316
  56. M. J. Torres, G. Petroselli, M. Daz, R. Erra-Balsells, M. C. Audisio. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds. World J Microbiol Biotechnol 2015;31:929
    https://doi.org/10.1007/s11274-015-1847-9
  57. Ankit Kumar, Sandeep Saini, Victor Wray, Manfred Nimtz, Anil Prakash, B. N. Johri. Characterization of an antifungal compound produced byBacillussp. strain A5F that inhibitsSclerotinia sclerotiorum. J. Basic Microbiol. 2012;52:670
    https://doi.org/10.1002/jobm.201100463
  58. Lianshuai Ding, Wenbin Guo, Xinhua Chen. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Appl Microbiol Biotechnol 2019;103:5367
    https://doi.org/10.1007/s00253-019-09792-1
  59. Bobde M. Prajakta, Patil P. Suvarna, Singh P. Raghvendra, Rai R. Alok. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35(R11) of soybean (Glycine max) rhizosphere. SN Appl. Sci. 2019;1
    https://doi.org/10.1007/s42452-019-1149-1
  60. Pratiksha Singh, Jin Xie, Yanhua Qi, Qijian Qin, Cheng Jin, Bin Wang, Wenxia Fang. A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense. Marine Drugs 2021;19:516
    https://doi.org/10.3390/md19090516
  61. Dong Wan Lee, Beom Seok Kim. Antimicrobial Cyclic Peptides for Plant Disease Control. The Plant Pathology Journal 2015;31:1
    https://doi.org/10.5423/PPJ.RW.08.2014.0074
  62. Yuexia Sha, Qingchao Zeng, Shuting Sui. Screening and Application of Bacillus Strains Isolated from Nonrhizospheric Rice Soil for the Biocontrol of Rice Blast. Plant Pathol J 2020;36:231
    https://doi.org/10.5423/PPJ.OA.02.2020.0028
  63. Hye Young Kim, Tea Soo Lee. Antifungal Activity of Paenibacillus sp. IUB225-08 Against Colletotrichum gloeosporioides. The Korean Journal of Mycology 2012;40:258
    https://doi.org/10.4489/KJM.2012.40.4.258
  64. Domenico Ronga, Antonella Vitti, Massimo Zaccardelli, Catello Pane, Federica Caradonia, Mariateresa Cardarelli, Giuseppe Colla, Youssef Rouphael. Root Zone Management for Improving Seedling Quality of Organically Produced Horticultural Crops. Agronomy 2021;11:630
    https://doi.org/10.3390/agronomy11040630
  65. Chiara Ceresa, Maurizio Rinaldi, Valeria Chiono, Irene Carmagnola, Gianna Allegrone, Letizia Fracchia. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek 2016;109:1375
    https://doi.org/10.1007/s10482-016-0736-z
  66. Kyeong Hun Park, Hong Woo Park, Seong Woo Lee, Seung Ho Lee, Kyung Sun Myung, Sang Yeob Lee, Jaekyeong Song, Young Tak Kim, Kyoung Soo Park, Young Ock Kim. Isolation and Characterization of Bacillus Species Having Antifungal Activity Against Pathogens of Ginseng Damping Off. KJPS 2016;20:380
    https://doi.org/10.7585/kjps.2016.20.4.380
  67. Shilpa Mujumdar, Shradha Bashetti, Sheetal Pardeshi, Rebecca Thombre. Industrial Biotechnology. 2016.
    https://doi.org/10.1201/b19347-5
  68. Tabbene Olfa, Di Grazia Antonio, Azaiez Sana, Ben Slimene Imen, Elkahoui Salem, Alfeddy Mohamed Najib, Casciaro Bruno, Luca Vincenzo, Limam Ferid, Mangoni Maria Luisa, Richard Calderone. Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenicCandidaspecies. FEMS Yeast Research 2015;15:fov022
    https://doi.org/10.1093/femsyr/fov022
  69. Inès Mnif, Ariadna Grau-Campistany, Jonathan Coronel-León, Inès Hammami, Mohamed Ali Triki, Angeles Manresa, Dhouha Ghribi. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res 2016;23:6690
    https://doi.org/10.1007/s11356-015-5826-3
  70. Ayaz Farzand, Anam Moosa, Muhammad Zubair, Abdur Rashid Khan, Venance Colman Massawe, Hafiz Abdul Samad Tahir, Taha Majid Mahmood Sheikh, Muhammad Ayaz, Xuewen Gao. Suppression of Sclerotinia sclerotiorum by the Induction of Systemic Resistance and Regulation of Antioxidant Pathways in Tomato Using Fengycin Produced by Bacillus amyloliquefaciens FZB42. Biomolecules 2019;9:613
    https://doi.org/10.3390/biom9100613
  71. Jinjin Ma, Hu Liu, Chengqiang Wang, Zhilin Xia, Kai Liu, Qihui Hou, Yuhuan Li, Tongrui Zhang, Haide Wang, Beibei Wang, Yun Wang, Ruofei Ge, Baochao Xu, Gan Yao, Zhensheng Jiang, Wentong Hou, Yanqin Ding, Binghai Du. Complete Genome Sequence of Bacillus subtilis GQJK2, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity. Genome Announc 2017;5
    https://doi.org/10.1128/genomeA.00467-17
  72. ELENA SUKHANOVA, EKATERINA ZIMENS, OKSANA KALUZHNAYA, VALENTINA PARFENOVA, OLGA BELYKH. Epilithic Biofilms in Lake Baikal: Screening and Diversity of PKS and NRPS Genes in the Genomes of Heterotrophic Bacteria. 2018;67:501
    https://doi.org/10.21307/pjm-2018-060
  73. S. Harish, S. Parthasarathy, D. Durgadevi, K. Anandhi, T. Raguchander. Plant Growth Promoting Rhizobacteria for Agricultural Sustainability. 2018.
    https://doi.org/10.1007/978-981-13-7553-8_8
  74. Piyush Baindara, Suresh Korpole. Recent Trends in Antifungal Agents and Antifungal Therapy. 2018.
    https://doi.org/10.1007/978-81-322-2782-3_4
  75. Prapasri Srikhong, Kongyuth Lertmongkonthum, Rapeewan Sowanpreecha, Panan Rerngsamran. Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici. BioControl 2018;63:833
    https://doi.org/10.1007/s10526-018-9902-8
  76. Qingxiao Meng, Jingfang Yin, Noah Rosenzweig, David Douches, Jianjun J. Hao. Culture-Based Assessment of Microbial Communities in Soil Suppressive to Potato Common Scab. Plant Disease 2012;96:712
    https://doi.org/10.1094/PDIS-05-11-0441
  77. Kuo-Jen Hwang, Ming-Hsiu Tsai. Cross-Flow Microfiltration ofBacillus SubtilisBroths under Various Culture Times. Separation Science and Technology 2014;49:803
    https://doi.org/10.1080/01496395.2013.871037
  78. R. V. Velho, L. F. C. Medina, J. Segalin, A. Brandelli. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol 2011;56:297
    https://doi.org/10.1007/s12223-011-0056-7
  79. Yimin Hu, Fang Nan, Sarah Wanjiku Maina, Jia Guo, Shenglu Wu, Zhihong Xin. Clone of plipastatin biosynthetic gene cluster by transformation-associated recombination technique and high efficient expression in model organism Bacillus subtilis. Journal of Biotechnology 2018;288:1
    https://doi.org/10.1016/j.jbiotec.2018.10.006
  80. Dibya Jyoti Hazarika, Gunajit Goswami, Trishnamoni Gautom, Assma Parveen, Pompi Das, Madhumita Barooah, Robin Chandra Boro. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol 2019;19
    https://doi.org/10.1186/s12866-019-1440-8
  81. Xin Zhao, Ye Han, Xi-qian Tan, Jin Wang, Zhi-jiang Zhou. Optimization of antifungal lipopeptide production from Bacillus sp. BH072 by response surface methodology. J Microbiol. 2014;52:324
    https://doi.org/10.1007/s12275-014-3354-3
  82. Ayaz Farzand, Anam Moosa, Muhammad Zubair, Abdur Rashid Khan, Muhammad Ayaz, Venance Colman Massawe, Xuewen Gao. Transcriptional Profiling of Diffusible Lipopeptides and Fungal Virulence Genes During Bacillus amyloliquefaciens EZ1509-Mediated Suppression of Sclerotinia sclerotiorum. Phytopathology® 2020;110:317
    https://doi.org/10.1094/PHYTO-05-19-0156-R
  83. Bhimanagoud Kumbar, Riaz Mahmood, S.N. Nagesha, M.S. Nagaraja, D.G. Prashant, Ondara Zablon Kerima, Arti Karosiya, Mohan Chavan. Field application of Bacillus subtilis isolates for controlling late blight disease of potato caused by Phytophthora infestans. Biocatalysis and Agricultural Biotechnology 2019;22:101366
    https://doi.org/10.1016/j.bcab.2019.101366
  84. Katarzyna Paraszkiewicz, Przemysław Bernat, Paulina Siewiera, Magdalena Moryl, Lidia Sas Paszt, Paweł Trzciński, Łukasz Jałowiecki, Grażyna Płaza. Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Scientia Horticulturae 2017;225:802
    https://doi.org/10.1016/j.scienta.2017.07.034
  85. Yujing Jia, Jingxin Huang, Lanlan Qi, Xiaole Zhang, Jianhong Liu, Huilin Guan, Chenjiao Wang, Guangmei Tang, Xiaolin Dou, Meng Lu. Bacillus subtilis strain BS06 protects soybean roots from Fusarium oxysporum infection. 2021;368
    https://doi.org/10.1093/femsle/fnab102
  86. M. Jayaprakashvel, N. Mathivanan. Bacteria in Agrobiology: Plant Nutrient Management. 2021.
    https://doi.org/10.1007/978-3-642-21061-7_10
  87. Mai Mochizuki, Shoko Yamamoto, Yoshinao Aoki, Shunji Suzuki. Isolation and characterisation ofBacillus amyloliquefaciensS13-3 as a biological control agent for anthracnose caused byColletotrichum gloeosporioides. Biocontrol Science and Technology 2012;22:697
    https://doi.org/10.1080/09583157.2012.679644
  88. Maliheh Vahidinasab, Lars Lilge, Aline Reinfurt, Jens Pfannstiel, Marius Henkel, Kambiz Morabbi Heravi, Rudolf Hausmann. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microb Cell Fact 2020;19
    https://doi.org/10.1186/s12934-020-01468-0
  89. Han-mingyue Zhu, Yuan-zhi Pan. A novel antimicrobial protein of the endophytic Bacillus amyloliquefaciens and its control effect against Fusarium chlamydosporum. BioControl 2019;64:737
    https://doi.org/10.1007/s10526-019-09972-y
  90. Long-Zhen Lin, Qian-Wang Zheng, Tao Wei, Zi-Qian Zhang, Chao-Fan Zhao, Han Zhong, Qing-Yuan Xu, Jun-Fang Lin, Li-Qiong Guo. Isolation and Characterization of Fengycins Produced by Bacillus amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Foodborne Pathogens. Front. Microbiol. 2020;11
    https://doi.org/10.3389/fmicb.2020.579621
  91. Moutoshi Chakraborty, Nur Uddin Mahmud, Chhana Ullah, Mahfuzur Rahman, Tofazzal Islam. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae. Critical Reviews in Biotechnology 2021:1
    https://doi.org/10.1080/07388551.2021.1898325
  92. Anil Kumar Singh, Swaranjit Singh Cameotra. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res 2013;20:7367
    https://doi.org/10.1007/s11356-013-1752-4
  93. Narendra Kumar Papathoti, Dusadee Kiddeejing, Jayasimha Rayulu Daddam, Toan Le Thanh, Natthiya Buensanteai. Identification of Protease Inhibition Mechanism by Iturin A against Agriculture Cutworm (Spodoptera litura) by Homology Modeling and Molecular Dynamics. TOBIOIJ 2020;13:119
    https://doi.org/10.2174/1875036202013010119
  94. K.V. Pathak, H. Keharia. Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis ) using intact-cell MALDI-TOF mass spectrometry (ICMS). J Appl Microbiol 2013;114:1300
    https://doi.org/10.1111/jam.12161
  95. Nailea Báez-Vallejo, David A. Camarena-Pozos, Juan L. Monribot-Villanueva, Mónica Ramírez-Vázquez, Gloria L. Carrión-Villarnovo, José A. Guerrero-Analco, Laila P. Partida-Martínez, Frédérique Reverchon. Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiological Research 2020;235:126440
    https://doi.org/10.1016/j.micres.2020.126440
  96. Jaivel Nanjundan, Rajesh Ramasamy, Sivakumar Uthandi, Marimuthu Ponnusamy. Antimicrobial activity and spectroscopic characterization of surfactin class of lipopeptides from Bacillus amyloliquefaciens SR1. Microbial Pathogenesis 2019;128:374
    https://doi.org/10.1016/j.micpath.2019.01.037
  97. Khayalethu Ntushelo, Lesiba Klaas Ledwaba, Molemi Evelyn Rauwane, Oluwafemi Ayodeji Adebo, Patrick Berka Njobeh. The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects. Toxins 2019;11:606
    https://doi.org/10.3390/toxins11100606
  98. Jinling Hu, Mingzhu Zheng, Shuzhong Dang, Min Shi, Jinlin Zhang, Yanzhong Li. Biocontrol Potential of Bacillus amyloliquefaciens LYZ69 Against Anthracnose of Alfalfa (Medicago sativa). Phytopathology® 2021:PHYTO-09-20-038
    https://doi.org/10.1094/PHYTO-09-20-0385-R
  99. Srinivasan Nalini, Rengasamy Parthasarathi, Dhinakarasamy Inbakanadan. Environmental Biotechnology Vol. 2. 2021.
    https://doi.org/10.1007/978-3-030-38196-7_4
  100. Laryssa Andrade da Luz Santos, Luciano Ricardo Braga Pinheiro, Leandro de Souza Rocha, Carlos Augusto Dórea Bragança, Harllen Sandro Alves Silva. Biocontrole da antracnose em frutos de mamoeiro por bactérias epifíticas formadoras de biofilme. Summa phytopathol. 2021;47:45
    https://doi.org/10.1590/0100-5405/216998
  101. Hanen Ben Ayed, Noomen Hmidet, Max Béchet, Marlène Chollet, Gabrielle Chataigné, Valérie Leclère, Philippe Jacques, Moncef Nasri. Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochemistry 2014;49:1699
    https://doi.org/10.1016/j.procbio.2014.07.001
  102. Bárbara C. S. Farias, Denise C. Hissa, Camila T. M. do Nascimento, Samuel A. Oliveira, Davila Zampieri, Marcos N. Eberlin, Deivid L. S. Migueleti, Luiz F. Martins, Maíra P. Sousa, Danuza N. Moyses, Vânia M. M. Melo. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery. Appl Microbiol Biotechnol 2018;102:1179
    https://doi.org/10.1007/s00253-017-8675-9
  103. Qin Han, Fengli Wu, Xiaonan Wang, Hong Qi, Liang Shi, Ang Ren, Qinghai Liu, Mingwen Zhao, Canming Tang. The bacterial lipopeptide iturins induceVerticillium dahliaecell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol 2015;17:1166
    https://doi.org/10.1111/1462-2920.12538
  104. Isabel Mora, Jordi Cabrefiga, Emilio Montesinos, Vittorio Venturi. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria. PLoS ONE 2015;10:e0127738
    https://doi.org/10.1371/journal.pone.0127738
  105. Andressa Decesaro, Thaís Strieder Machado, Ângela Carolina Cappellaro, Alan Rempel, Ana Cláudia Margarites, Christian Oliveira Reinehr, Marcos Nogueira Eberlin, Davila Zampieri, Antônio Thomé, Luciane Maria Colla. Biosurfactants Production Using Permeate from Whey Ultrafiltration and Bioproduct Recovery by Membrane Separation Process. J Surfactants Deterg 2020;23:539
    https://doi.org/10.1002/jsde.12399
  106. Yong Yoon Lee, Younmi Lee, Young Soo Kim, Hyun Sup Kim, Yongho Jeon. Control of Red Pepper Anthracnose Using Bacillus subtilis YGB36, a Plant Growth Promoting Rhizobacterium. Res. Plant Dis 2020;26:8
    https://doi.org/10.5423/RPD.2020.26.1.8
  107. Thavasimuthu Citarasu, Eswaramoorthy Thirumalaikumar, Paramachandran Abinaya, Mariavincent Michael Babu, Ganapathi Uma. Green Sustainable Process for Chemical and Environmental Engineering and Science. 2020.
    https://doi.org/10.1016/B978-0-12-823380-1.00019-8
  108. Takanori Aoki, Yoshinao Aoki, Shiho Ishiai, Misa Otoguro, Shunji Suzuki. Impact ofBacillus cereusNRKT on grape ripe rot disease through resveratrol synthesis in berry skin. Pest. Manag. Sci. 2017;73:174
    https://doi.org/10.1002/ps.4283
  109. Rui Ding, Xue-Chang Wu, Chao-Dong Qian, Yi Teng, Ou Li, Zha-Jun Zhan, Yu-Hua Zhao. Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol. 2011;49:942
    https://doi.org/10.1007/s12275-011-1153-7
  110. Manoj Kumar Solanki, Rajesh Kumar Singh, Supriya Srivastava, Sudheer Kumar, Prem Lal Kashyap, Alok K. Srivastava. Characterization of antagonistic-potential of twoBacillusstrains and their biocontrol activity againstRhizoctonia solaniin tomato. J. Basic Microbiol. 2015;55:82
    https://doi.org/10.1002/jobm.201300528
  111. Muhammad Azeem, Marina Barba-Aliaga, Anna Karin Borg-Karlson, Olle Terenius, Anders Broberg, Gunaratna Kuttuva Rajarao. Heterobasidion-growth inhibiting Bacillus subtilis A18 exhibits medium- and age-dependent production of lipopeptides. Microbiological Research 2019;223-225:129
    https://doi.org/10.1016/j.micres.2019.04.006
  112. Karuppiah Vijay, Thangarasu Suganya Devi, Karthikeyan Kirupa Sree, Abdallah M. Elgorban, Ponnuchamy Kumar, Muthusamy Govarthanan, Thangavel Kavitha. In vitro screening and in silico prediction of antifungal metabolites from rhizobacterium Achromobacter kerstersii JKP9. Arch Microbiol 2020;202:2855
    https://doi.org/10.1007/s00203-020-01982-0
  113. Estibaliz Sansinenea. Intellectual Property Issues in Microbiology. 2020.
    https://doi.org/10.1007/978-981-13-7466-1_8
  114. Yazen Yaseen, Awa Diop, Frédérique Gancel, Max Béchet, Philippe Jacques, Djamel Drider. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Arch Microbiol 2018;200:783
    https://doi.org/10.1007/s00203-018-1483-5
  115. Ju Jung, Kyung Ok Yu, Ahmad Bazli Ramzi, Se Hoon Choe, Seung Wook Kim, Sung Ok Han. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol. Bioeng. 2012;109:2349
    https://doi.org/10.1002/bit.24524
  116. Jin-Feng Liu, Serge Mbadinga, Shi-Zhong Yang, Ji-Dong Gu, Bo-Zhong Mu. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation. IJMS 2015;16:4814
    https://doi.org/10.3390/ijms16034814
  117. Gili Rosenberg, Nitai Steinberg, Yaara Oppenheimer-Shaanan, Tsvia Olender, Shany Doron, Julius Ben-Ari, Alexandra Sirota-Madi, Zohar Bloom-Ackermann, Ilana Kolodkin-Gal. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. npj Biofilms Microbiomes 2016;2
    https://doi.org/10.1038/npjbiofilms.2015.27
  118. Shubham Thakur, Amrinder Singh, Ritika Sharma, Rohan Aurora, Subheet Kumar Jain. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications. CDM 2020;21:885
    https://doi.org/10.2174/1389200221666201008143238
  119. S. O. Adebajo, P. O. Akintokun, A. E. Ojo, A.K. Akintokun, O.A. Badmos. Recovery of Biosurfactant Using Different Extraction Solvent by Rhizospheric Bacteria Isolated from Rice-husk and Poultry Waste Biochar Amended Soil. Egyptian Journal of Basic and Applied Sciences 2020;7:252
    https://doi.org/10.1080/2314808X.2020.1797377
  120. Folasade A. Adu, Charles H. Hunter. Screening and Identification of Lipopeptide Biosurfactants Produced by Two Aerobic Endospore-Forming Bacteria Isolated from Mfabeni Peatland, South Africa. Curr Microbiol 2021;78:2615
    https://doi.org/10.1007/s00284-021-02516-7
  121. Hyo-Song Nam, Hyun-Ju Yang, Byung Jun Oh, Anne J. Anderson, Young Cheol Kim. Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae. The Plant Pathology Journal 2016;32:273
    https://doi.org/10.5423/PPJ.NT.12.2015.0274
  122. Alfredo Ambrico, Mario Trupo. Efficacy of cell free supernatant from Bacillus subtilis ET-1, an Iturin A producer strain, on biocontrol of green and gray mold. Postharvest Biology and Technology 2017;134:5
    https://doi.org/10.1016/j.postharvbio.2017.08.001
  123. Qing-Xia Zhang, Ying Zhang, Hai-Huan Shan, Yun-Hui Tong, Xi-Jun Chen, Feng-Quan Liu. Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10. Environ Sci Pollut Res 2017;24:25000
    https://doi.org/10.1007/s11356-017-0179-8
  124. Yaoqi Guo, En Huang, Xu Yang, Liwen Zhang, Ahmed E. Yousef, Jin Zhong. Isolation and characterization of a Bacillus atrophaeus strain and its potential use in food preservation. Food Control 2016;60:511
    https://doi.org/10.1016/j.foodcont.2015.08.029
  125. Izzah Shahid, Jun Han, Sharoon Hanooq, Kauser A. Malik, Christoph H. Borchers, Samina Mehnaz. Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol. Front. Sustain. Food Syst. 2021;5
    https://doi.org/10.3389/fsufs.2021.605195
  126. B. Jasim, J. Mathew, E.K. Radhakrishnan. Identification of a novel endophytic Bacillus sp. from Capsicum annuum with highly efficient and broad spectrum plant probiotic effect. J Appl Microbiol 2016;121:1079
    https://doi.org/10.1111/jam.13214
  127. Yuanxiang Pang, Jianjun Yang, Xinyue Chen, Yu Jia, Tong Li, Junhua Jin, Hui Liu, Linshu Jiang, Yanling Hao, Hongxing Zhang, Yuanhong Xie. An Antifungal Chitosanase from Bacillus subtilis SH21. Molecules 2021;26:1863
    https://doi.org/10.3390/molecules26071863
  128. Lidiane Maria de Andrade, Débora de Oliveira, Cristiano José de Andrade. Nanotechnology for Agriculture. 2021.
    https://doi.org/10.1007/978-981-32-9370-0_5
  129. Amy R. Nava. Biosurfactants for a Sustainable Future. 2021.
    https://doi.org/10.1002/9781119671022.ch14
  130. Manish Kumar Dubey, Mukesh Meena, Mohd. Aamir, Andleeb Zehra, Ram Sanmukh Upadhyay. New and Future Developments in Microbial Biotechnology and Bioengineering. 2021.
    https://doi.org/10.1016/B978-0-444-63504-4.00019-0
  131. Vanessa Santana Vieira Santos, Edgar Silveira, Boscolli Barbosa Pereira. Ecotoxicological assessment of synthetic and biogenic surfactants using freshwater cladoceran species. Chemosphere 2019;221:519
    https://doi.org/10.1016/j.chemosphere.2019.01.077
  132. Paiboon Tunsagool, Sekkarin Ploypetch, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Kiattawee Choowongkomon, Jatuporn Rattanasrisomporn. Efficacy of cyclic lipopeptides obtained from Bacillus subtilis to inhibit the growth of Microsporum canis isolated from cats. Heliyon 2021;7:e07980
    https://doi.org/10.1016/j.heliyon.2021.e07980
  133. Maryam Fanaei, Kristina Jurcic, Giti Emtiazi. Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry. World J Microbiol Biotechnol 2021;37
    https://doi.org/10.1007/s11274-021-03064-9
  134. Angom Romita Devi, Rhitu Kotoky, Piyush Pandey, G. D. Sharma. Bacilli and Agrobiotechnology. 2021.
    https://doi.org/10.1007/978-3-319-44409-3_9
  135. Debahuti Goswami, Siddhartha Narayan Borah, Jiumoni Lahkar, Pratap Jyoti Handique, Suresh Deka. Antifungal properties of rhamnolipid produced byPseudomonas aeruginosaDS9 againstColletotrichum falcatum. J. Basic Microbiol. 2015;55:1265
    https://doi.org/10.1002/jobm.201500220
  136. Lucia Lombardi, Annarita Falanga, Valentina Del Genio, Stefania Galdiero. A New Hope: Self-Assembling Peptides with Antimicrobial Activity. Pharmaceutics 2019;11:166
    https://doi.org/10.3390/pharmaceutics11040166
  137. Estibaliz Sansinenea, Aurelio Ortiz. Secondary metabolites of soil Bacillus spp.. Biotechnol Lett 2011;33:1523
    https://doi.org/10.1007/s10529-011-0617-5
  138. Alwar Ramanujam Padmavathi, Shunmugiah Karutha Pandian. Antibiofilm Activity of Biosurfactant Producing Coral Associated Bacteria Isolated from Gulf of Mannar. Indian J Microbiol 2014;54:376
    https://doi.org/10.1007/s12088-014-0474-8
  139. Songhao Rong, Hong Xu, Lihua Li, Rongjun Chen, Xiaoling Gao, Zhengjun Xu. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pesticide Biochemistry and Physiology 2020;162:69
    https://doi.org/10.1016/j.pestbp.2019.09.003
  140. Tao Wu, Meirong Chen, Libang Zhou, Fengxia Lu, Xiaomei Bie, Zhaoxin Lu. Bacillomycin D effectively controls growth of Malassezia globosa by disrupting the cell membrane. Appl Microbiol Biotechnol 2020;104:3529
    https://doi.org/10.1007/s00253-020-10462-w
  141. Ayaz Farzand, Anam Moosa, Muhammad Zubair, Abdur Rashid Khan, Alvina Hanif, Hafiz Abdul Samad Tahir, Xuewen Gao. Marker assisted detection and LC-MS analysis of antimicrobial compounds in different Bacillus strains and their antifungal effect on Sclerotinia sclerotiorum. Biological Control 2019;133:91
    https://doi.org/10.1016/j.biocontrol.2019.03.014
  142. Khyati V. Pathak, Hareshkumar Keharia. Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3 Biotech 2014;4:283
    https://doi.org/10.1007/s13205-013-0151-3
  143. K.L. Sajitha, Suma Arun Dev. Quantification of antifungal lipopeptide gene expression levels in Bacillus subtilis B1 during antagonism against sapstain fungus on rubberwood. Biological Control 2016;96:78
    https://doi.org/10.1016/j.biocontrol.2016.02.007
  144. Shine Kadaikunnan, Thankappan Sarasam Rejiniemon, Jamal M Khaled, Naiyf S Alharbi, Ramzi Mothana. In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens . Ann Clin Microbiol Antimicrob 2015;14
    https://doi.org/10.1186/s12941-015-0069-1
  145. Deepansh Sharma, Baljeet Singh Saharan, Shailly Kapil. Biosurfactants of Lactic Acid Bacteria. 2015.
    https://doi.org/10.1007/978-3-319-26215-4_1
  146. Anil Kumar Singh, Ria Rautela, Swaranjit Singh Cameotra. Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2. Microb Cell Fact 2014;13
    https://doi.org/10.1186/1475-2859-13-67
  147. Kyungseok Park, Yong-Soon Park, Jamal Ahamed, Swarnalee Dutta, Hojin Ryu, Seo-Hyun Lee, Kotnala Balaraju, Maniruzzaman Manir, Surk-Sik Moon, M.T. Charles. Elicitation of induced systemic resistance of chili pepper by iturin A analogs derived fromBacillus vallismortisEXTN-1. Can. J. Plant Sci. 2016:564
    https://doi.org/10.1139/cjps-2015-0199
  148. Francisco Salazar, Aurelio Ortiz, Estibaliz Sansinenea. Characterisation of two novel bacteriocin-like substances produced by Bacillus amyloliquefaciens ELI149 with broad-spectrum antimicrobial activity. Journal of Global Antimicrobial Resistance 2017;11:177
    https://doi.org/10.1016/j.jgar.2017.08.008
  149. Young Soo Kim, Younmi Lee, Wonsu Cheon, Jungwook Park, Hyeok-Tae Kwon, Kotnala Balaraju, Jungyeon Kim, Yeo Jun Yoon, Yongho Jeon. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Sci Rep 2021;11
    https://doi.org/10.1038/s41598-020-80231-2
  150. Piotr Biniarz, Marcin Łukaszewicz, Tomasz Janek. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Critical Reviews in Biotechnology 2017;37:393
    https://doi.org/10.3109/07388551.2016.1163324
  151. Kaliannan Durairaj, Palanivel Velmurugan, Jung-Hee Park, Woo-Suk Chang, Yool-Jin Park, Palaninaicker Senthilkumar, Kyung-Min Choi, Jeong-Ho Lee, Byung-Taek Oh. An investigation of biocontrol activity Pseudomonas and Bacillus strains against Panax ginseng root rot fungal phytopathogens. Biological Control 2018;125:138
    https://doi.org/10.1016/j.biocontrol.2018.05.021
  152. Aurelio Ortiz, Estibaliz Sansinenea. Chemical Compounds Produced by Bacillus sp. Factories and Their Role in Nature. MRMC 2019;19:373
    https://doi.org/10.2174/1389557518666180829113612
  153. Imen Haddoudi, Jordi Cabrefiga, Isabel Mora, Haythem Mhadhbi, Emilio Montesinos, Moncef Mrabet. Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp.. Biological Control 2021;160:104671
    https://doi.org/10.1016/j.biocontrol.2021.104671
  154. Young-Sook Kim, Ja-Gyeong Song, In-Kyoung Lee, Woon-Hyung Yeo, Bong-Sik Yun. Bacillussp. BS061 Suppresses Powdery Mildew and Gray Mold. Mycobiology 2013;41:108
    https://doi.org/10.5941/MYCO.2013.41.2.108
  155. Jamil Shafi, Hui Tian, Mingshan Ji. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment 2017;31:446
    https://doi.org/10.1080/13102818.2017.1286950
  156. Khem Raj Meena, Abhishek Sharma, Rakesh Kumar, Shamsher S. Kanwar. Two factor at a time approach by response surface methodology to aggrandize the Bacillus subtilis KLP2015 surfactin lipopeptide to use as antifungal agent. Journal of King Saud University - Science 2020;32:337
    https://doi.org/10.1016/j.jksus.2018.05.025
  157. Wenchao Chen, Xuli Ma, Xiuzhen Wang, Shouwen Chen, Anna Rogiewicz, Bogdan Slominski, Xia Wan, Fenghong Huang. Establishment of a rapeseed meal fermentation model for iturin A production by Bacillus amyloliquefaciens CX ‐20 . Microb. Biotechnol. 2019;12:1417
    https://doi.org/10.1111/1751-7915.13483
  158. Rakesh Santhanam, Riya C. Menezes, Veit Grabe, Dapeng Li, Ian T. Baldwin, Karin Groten. A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease. Mol Ecol 2019;28:1154
    https://doi.org/10.1111/mec.15012
  159. Ajay Kumar, Sandeep Kumar Singh, Chandra Kant, Hariom Verma, Dharmendra Kumar, Prem Pratap Singh, Arpan Modi, Samir Droby, Mahipal Singh Kesawat, Hemasundar Alavilli, Shashi Kant Bhatia, Ganesh Dattatraya Saratale, Rijuta Ganesh Saratale, Sang-Min Chung, Manu Kumar. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants 2021;10:1472
    https://doi.org/10.3390/antiox10091472
  160. Deisy Lisseth Toloza-Moreno, Luz Marina Lizarazo-Forero, Daniel Uribe-Vélez. Antagonist capacity of bacteria isolated from cape gooseberry cultures (Physalis peruviana L.) for biological control of Fusarium oxysporum. Trop. plant pathol. 2020;45:1
    https://doi.org/10.1007/s40858-019-00313-z
  161. Xiaomeng Chen, Yajie Wang, Yu Gao, Tongguo Gao, Dongdong Zhang. Inhibitory Abilities of Bacillus Isolates and Their Culture Filtrates against the Gray Mold Caused by Botrytis cinerea on Postharvest Fruit. Plant Pathol J 2019;35:425
    https://doi.org/10.5423/PPJ.OA.03.2019.0064
  162. Deepti Malviya, Pramod Kumar Sahu, Udai B. Singh, Surinder Paul, Amrita Gupta, Abhay Raj Gupta, Shailendra Singh, Manoj Kumar, Diby Paul, Jai P. Rai, Harsh V. Singh, G. P. Brahmaprakash. Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. IJERPH 2020;17:1434
    https://doi.org/10.3390/ijerph17041434
  163. Akanksha Singh, Vipin Kumar Singh, Abhishek Kumar Dwivedy, Deepika, Shikha Tiwari, Awanindra Dwivedi, Nawal Kishore Dubey. Plant Microbiome Paradigm. 2020.
    https://doi.org/10.1007/978-3-030-50395-6_7
  164. M. A. Soares, H-Y. Li, K. P. Kowalski, M. Bergen, M. S. Torres, J. F. White. Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth. Microb Ecol 2016;72:407
    https://doi.org/10.1007/s00248-016-0793-x
  165. Xinyi Chen, Yuanyuan Zhang, Xuechi Fu, Yan Li, Qi Wang. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology 2016;115:113
    https://doi.org/10.1016/j.postharvbio.2015.12.021
  166. Balasubramani Govindasamy, Lorenzo Pecoraro, Balasubramanian Velramar, Silambarasan Tamilselvan, Ayyasamy Pudukadu Munusamy, Ragavendran Chinnasamy, Perumal Pachiappan. Evaluation of Salmonella bongori derived biosurfactants and its extracellular protein separation by SDS-PAGE using petridishes: A simply modified approach. International Journal of Biological Macromolecules 2019;140:156
    https://doi.org/10.1016/j.ijbiomac.2019.08.034
  167. Manli Zhu, Youwei He, Yi Li, Tirong Ren, Hao Liu, Junbin Huang, Daohong Jiang, Tom Hsiang, Lu Zheng. Two New Biocontrol Agents Against Clubroot Caused by Plasmodiophora brassicae. Front. Microbiol. 2020;10
    https://doi.org/10.3389/fmicb.2019.03099
  168. Gunaseelan Dhanarajan, Vivek Rangarajan, Ramkrishna Sen. Dual gradient macroporous resin column chromatography for concurrent separation and purification of three families of marine bacterial lipopeptides from cell free broth. Separation and Purification Technology 2015;143:72
    https://doi.org/10.1016/j.seppur.2015.01.025
  169. Vivek Chauhan, Shamsher S. Kanwar. Lipopeptide(s) associated with human microbiome as potent cancer drug. Seminars in Cancer Biology 2021;70:128
    https://doi.org/10.1016/j.semcancer.2020.06.012
  170. Silvia Altoé Falqueto, Bruno Faria Pitaluga, Janaína Rosa de Sousa, Sabrina Ketrin Targanski, Mateus Gandra Campos, Tiago Antônio de Oliveira Mendes, Gilvan Ferreira da Silva, Dulce Helena Siqueira Silva, Marcos Antônio Soares. Bacillus spp. metabolites are effective in eradicating Aedes aegypti (Diptera: Culicidae) larvae with low toxicity to non-target species. Journal of Invertebrate Pathology 2021;179:107525
    https://doi.org/10.1016/j.jip.2020.107525
  171. Sarika Namjoshi, Istvan Toth, Joanne T. Blanchfield, Nicholas Trotter, Ricardo L. Mancera, Heather A. E. Benson. Enhanced Transdermal Peptide Delivery and Stability by Lipid Conjugation: Epidermal Permeation, Stereoselectivity and Mechanistic Insights. Pharm Res 2014;31:3304
    https://doi.org/10.1007/s11095-014-1420-5
  172. Dhara P. Sachdev, Swaranjit S. Cameotra. Biosurfactants in agriculture. Appl Microbiol Biotechnol 2013;97:1005
    https://doi.org/10.1007/s00253-012-4641-8
  173. Ziba Najmi, Gholamhossein Ebrahimipour, Andrea Franzetti, Ibrahim M. Banat. In situdownstream strategies for cost-effective bio/surfactant recovery. Biotechnology and Applied Biochemistry 2018;65:523
    https://doi.org/10.1002/bab.1641
  174. P. Narayanasamy. Biological Management of Diseases of Crops. 2018.
    https://doi.org/10.1007/978-94-007-6380-7_5
  175. Fisseha Andualem Bezza, Evans M. Nkhalambayausi Chirwa. Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. Journal of Hazardous Materials 2017;321:218
    https://doi.org/10.1016/j.jhazmat.2016.08.035
  176. Massimo Zaccardelli, Roberto Sorrentino, Michele Caputo, Riccardo Scotti, Enrica De Falco, Catello Pane. Stepwise-Selected Bacillus amyloliquefaciens and B. subtilis Strains from Composted Aromatic Plant Waste Able to Control Soil-Borne Diseases. Agriculture 2020;10:30
    https://doi.org/10.3390/agriculture10020030
  177. Gabrielly Oliveira da Silva, Bárbara Cibelle Soares Farias, Renally Barbosa da Silva, Edson Holanda Teixeira, Rossana de Aguiar Cordeiro, Denise Cavalcante Hissa, Vânia Maria Maciel Melo. Effects of lipopeptide biosurfactants on clinical strains of Malassezia furfur growth and biofilm formation. 2021
    https://doi.org/10.1093/mmy/myab051
  178. Siddulakshmi Prasanna, M. K. Prasannakumar, H. B. Mahesh, Gopal Venkatesh Babu, P. Kirnaymayee, M. E. Puneeth, Karthik S. Narayan, D. Pramesh. Diversity and biopotential of Bacillus velezensis strains A6 and P42 against rice blast and bacterial blight of pomegranate. Arch Microbiol 2021;203:4189
    https://doi.org/10.1007/s00203-021-02400-9
  179. Morteza Abbasi, Mahmoud Rezazad Bari, Shahram Aramideh, Nasrin Veghar Mousavi, Mohammad Ghayyomi. Assessment of the effect of biosurfactant produced byPseudomonas aeruginosain lethality ofBacillus thuringiensisBerl. against 3rd instars larvae of white cabbage butterfly (Pieris brassicaeL.). Archives Of Phytopathology And Plant Protection 2014;47:2106
    https://doi.org/10.1080/03235408.2013.869889
  180. Hélène Desmyttere, Caroline Deweer, Jérôme Muchembled, Karin Sahmer, Justine Jacquin, François Coutte, Philippe Jacques. Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity. Front. Microbiol. 2019;10
    https://doi.org/10.3389/fmicb.2019.02327
  181. O. Tabbene, S. Azaiez, A. Di Grazia, I. Karkouch, I. Ben Slimene, S. Elkahoui, M.N. Alfeddy, B. Casciaro, V. Luca, F. Limam, M.L. Mangoni. Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. J Appl Microbiol 2016;120:289
    https://doi.org/10.1111/jam.13030
  182. Mara Silva, Tânia Rosado, Dora Teixeira, António Candeias, Ana Teresa Caldeira. Green mitigation strategy for cultural heritage: bacterial potential for biocide production. Environ Sci Pollut Res 2017;24:4871
    https://doi.org/10.1007/s11356-016-8175-y
  183. G. Płaza, J. Chojniak, K. Rudnicka, K. Paraszkiewicz, P. Bernat. Detection of biosurfactants in Bacillus species: genes and products identification. J Appl Microbiol 2015;119:1023
    https://doi.org/10.1111/jam.12893