Recombinant Adeno-Associated Virus Expressing Truncated IK Cytokine Diminishes the Symptoms of Inflammatory Arthritis

Seulgi Choi¹, Hyelim Park¹, Marstella Minelko¹, Eun-Kyung Kim², Mi-Ra Cho², and Jae-Hwan Nam*¹

¹Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
²The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea

IK functions as a downregulator of the expression of major histocompatibility complex (MHC) class II that is induced by interferon (IFN)-γ. This function of IK is associated with the MHC class II transactivator, which is an influential player in both constitutive and cytokine-inducible expression of MHC class II [1]. Many studies have clearly demonstrated that MHC class II is an important factor in antigen recognition. Moreover, excessive expression of MHC class II has been recognized as one cause of autoimmune diseases, such as rheumatoid arthritis (RA), psoriasis, and lupus nephritis [2]. The ability of IK to downregulate MHC class II expression suggests that it has the potential to be applied to therapy of autoimmune diseases. Indeed, previous studies have demonstrated the potential of IK as a therapeutic agent for autoimmune diseases, including lupus nephritis and RA. Treatment of MRL/lpr mice with truncated IK (tIK) reduced renal damage through reduction of macrophage and T cell infiltration [3]. Our previous study showed that transgenic mice expressing tIK were resistant to the induction of inflammatory arthritis via a reduction in proinflammatory immune cells such as macrophages and pathogenic T helper 1 (Th1) and Th17 cells [4]. These previous reports indicated that tIK may be a candidate for treatment of inflammatory arthritis, such as RA.

Adeno-associated virus (AAV) is recognized as a promising vehicle for gene delivery for gene therapy. AAV has several advantages compared with other viral vectors [5], including a good level of safety because of its lack of pathogenicity and immunogenicity. It also has other useful characteristics, such as the ability of long-term expression of inserted genes and tropism for a broad range of cells [6].

In this study, we examined the therapeutic effect of tIK for RA using recombinant AAV serotype 2 expressing tIK (AAV2-tIK), which was applied to collagen-induced arthritis (CIA) in DBA/1J mice as an experimental model of arthritis.

We cloned the tIK gene fused with the hemagglutinin (HA) gene into the AAV2 viral vector and pcDNA3.1. The tIK-HA gene was obtained from a previous clone [4]. The
Therapeutic Effect of AAV2-tIK was constructed by Virovek (USA). The expression of the tIK gene in 293T cells by infection with 1×10^{11} and 1×10^{12} viral genomes (vg)/ml of recombinant AAV2-tIK and transfection with pcDNA3.1-tIK (tIK-HA) as the positive control were confirmed. Recombinant AAV2-GFP as a negative control was purchased from Virovek. Expression of tIK was confirmed using anti-HA antibody (Bethyl Laboratories, USA) and anti-RED antibody (Thermo Fisher Scientific, USA) to detect tIK and the fused protein. RED is a unique amino-acid sequence characteristic of IK [7]. The expression of tIK in 293 T cells in vitro was confirmed to be proportional to the amount of AAV2-tIK vector, and the size of the tIK expressed after AAV2-tIK infection was exactly the same as that of the transfected tIK-HA fusion protein detected by both anti-HA and anti-RED antibodies (Fig. 1A). To confirm the tIK expression in mice in vivo, the mRNA expression level of tIK was analyzed in the liver and spleen of injected mice at 6 weeks after injection. In liver tissue, the tIK mRNA expression level was detected in AAV2-tIK-injected mice, but not in AAV2-GFP-injected mice. The tIK mRNA expression level in spleen tissue was not detected in both AAV2-tIK- and AAV2-GFP-injected mice (Fig. 1B). However, the results were not statistically significant.

Next, we injected 2×10^{11} vg/mouse of AAV2-tIK or AAV2-GFP intravenously into DBA/1J mice twice at 1-week intervals. At 7 weeks after AAV2-tIK or AAV2-GFP injection, we induced CIA in the DBA/1J mice as an experimental model of arthritis. An emulsion of 10 mg/ml collagen and complete Freund’s adjuvant (first injection) or incomplete Freund’s adjuvant (booster injection 2 weeks later) was injected intradermally [8]. All animal studies were approved by and performed according to the Institutional Animal Care and Use Committee of the Sungsim Campus at the Catholic University of Korea (IACUC Board Regulations #2016-009) [9]. To analyze the RA symptoms, the severity of symptoms in each paw was scored on a scale from 0 (no symptoms) to 4 (maximal level of symptoms), and the scores for the four limbs were summed for each mouse ($n = 6$). The severity and incidence of arthritis were scored at intervals of 3–5 days over 4 weeks. The severity and incidence of RA were lower in the AAV2-tIK-injected mice than in the mice treated with AAV2-GFP during the observation days (28 days after collagen injection) (Figs. 2A and 2B). Mice were sacrificed for analysis 28 days after the booster immunization. We observed less destruction in the joints of the AAV2-tIK-injected mice compared with that of the AAV2-GFP-injected mice (Fig. 2C). Histological analysis showed that the levels of inflammatory cytokines (IL-1β, TNF-α, and IL-17) and pathogenic factors related to RA (RANKL and MMP9) were lower in the joints of AAV2-tIK-injected mice than in those of AAV2-GFP-injected mice (Fig. 2D). The percentages of Th1 and Th17 cells in splenocytes were analyzed using anti-CD4-allophycocyanin as a surface marker, and anti-IFN-γ-phycoerythrin (PE) and anti-IL-17A-PE as an intracellular marker. The pseudocolor dot plots represent cell distribution gated on CD4+ T cells. Flow cytometric analysis of splenocytes showed that the proportions of Th1 and Th17 cells were lower in AAV2-tIK-injected mice than in AAV2-GFP-injected mice (Fig. 2E). A previous report showed that tIK may only function in an

![Fig. 1. Expression of tIK gene by recombinant AAV2-tIK.](image-url)
immunologically activated condition, but not in a normal condition [4]. Therefore, AAV2-tIK may not show any immunological response in a normal condition in the mouse.

RA is a chronic inflammatory disease characterized by synovial inflammation and joint damage. Although the causes of RA are unclear, it is considered that not only the individual’s genetic and environmental background but also the infiltration of immune cells can influence the pathology of RA [10]. IL-1β and TNF-α are typical proinflammatory cytokines associated with the disease [11–13], whereas IL-17 is mostly produced by Th17 cells and is related to the induction and pathogenesis of inflammatory arthritis [14]. Because of the relationships between these cytokines and RA, monoclonal antibodies targeting the cytokines have been used as therapy for inflammatory autoimmune diseases, including RA [15]. In addition, the RANKL–RANK receptor pathway stimulates the activation and differentiation of mature osteoclasts, inducing bone destruction in RA [16]. Because the MMP-9 level is high in serum and synovial fluids of RA patients, it has been highlighted as a significant marker of RA [17].

Our study showed that infection with AAV2-tIK reduced the levels of these proinflammatory cytokines in joint tissue (Fig. 2D) and reduced the symptoms of inflammatory arthritis (Figs. 2A and 2B), the destruction of joint tissue (Fig. 2C), and the proportions of proinflammatory cells such as Th1 and Th17 (Fig. 2E). All data clearly show that recombinant AAV2-tIK prevented the induction of inflammatory arthritis symptoms in the CIA disease.
model.

Although our previous study showed that tIK is a candidate target for inflammatory arthritis treatment [4], we did not then have a method for delivery of exogenous tIK into patients. In this study, we developed the recombinant AAV2-tIK for this purpose and showed that it has potential as a therapeutic agent for suppressing the progression of inflammatory arthritis. Moreover, it may be useful for gene therapy for RA (a type of inflammatory arthritis) patients because it is a viral vector system that can deliver therapeutic genes to these patients without repeated treatments.

Acknowledgments

The detailed protocols for all experiments are included in the supplementary data. This work was supported by the Catholic University of Korea, Research Fund 2017, the Ministry of Health & Welfare, Republic of Korea (HI15C2955 and HI13C0826), KFDA (16172INFECTION268), and Basic Science Research Program through the NRF funded by the Ministry of Science, ICT & Future Planning (NRF-2015M3A9B5030157).

References