Combined Treatment with Low Concentrations of Aqueous and Gaseous Chlorine Dioxide Inactivates *Escherichia coli* O157:H7 and *Salmonella* Typhimurium Inoculated on Paprika

Hyun-Gyu Kim and Kyung Bin Song*

Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea

Introduction

Foodborne illness has increased owing to cross-contamination of foods and global warming [1, 2]. Major foodborne diseases are caused by contamination with *Escherichia* and *Salmonella* [3]. These pathogenic bacteria are a major threat to vendors of fresh produce [4].

Salmonellosis is responsible for 19,000 hospital admissions in the USA every year [5]. Most cases of salmonellosis have been attributed to consuming poultry products [6], but the frequency of foodborne disease outbreaks associated with *Salmonella* in fresh produce has increased [7]. *E. coli* O157:H7 is also a threat to humans, as it causes hemorrhagic colitis and hemolytic uremic syndrome [8]. Feces of livestock can contaminate soil or irrigation water, and fruits and vegetables are not thermally processed after harvest. Therefore, they can be easily exposed to pathogenic bacteria through postharvest processing, irrigation water, and workers [9, 10]. In particular, paprika is more susceptible to contamination with pathogenic bacteria [11], and has previously been recalled owing to *Salmonella* contamination in the United States [12]. Therefore, appropriate postharvest treatment to inactivate *S. Typhimurium* and *E. coli* O157:H7 on paprika is needed.

As a chlorine-based treatment, chlorine dioxide (ClO₂) is a substitute for sodium hypochlorite (NaOCl). ClO₂ has more oxidation capacity than NaOCl and it does not generate harmful chemicals such as trihalomethane [13]. Additionally, it is highly soluble in water and does not leave any toxic residue [14]. Various concentrations of gaseous ClO₂ have been used to inactivate pathogenic bacteria on green peppers [15], strawberries [16], Roma tomatoes [17], and blueberries [18]. In addition, many studies on aqueous ClO₂ in fresh produce have been performed [19, 20], but few have been conducted using low concentrations of gaseous ClO₂.

Combined treatment with gaseous and aqueous chlorine dioxide (ClO₂) was performed to improve the microbiological safety and quality of paprika. A single treatment of 50 ppmv ClO₂ gas for 30 min decreased the populations of *Escherichia coli* O157:H7 and *Salmonella* Typhimurium by 2.33 and 2.91 log CFU/g, respectively. In addition, a single treatment of aqueous ClO₂ (50 ppm) for 5 min decreased these populations by 1.86 and 1.37, respectively. The most dramatic effects were achieved by combined treatment of 50 ppm aqueous and gaseous ClO₂ for 30 min, which decreased populations of *E. coli* O157:H7 and S. Typhimurium by 4.11 and 3.61 log CFU/g, respectively. With regard to the qualities of paprika, no adverse effects were elicited by the combined treatment. Thus, combined treatment with aqueous and gaseous ClO₂ is a suitable approach that can be used to improve the microbial safety and quality of paprika.

Keywords: Chlorine dioxide, combined treatment, microbial safety, paprika, pathogenic bacteria
aqueous ClO$_2$ treatment has never been evaluated. To address this, we tested whether this combined treatment could inactivate S. Typhimurium and E. coli O157:H7 that were inoculated on paprika.

Materials and Methods

Preparation of Samples

Paprika (Capsicum annuum L.) fruits were obtained from a local farm in Hwasun, Korea, and fully ripened red paprika fruits were chosen and used for the experiments. Harvested paprika fruits were transported to the laboratory within 3 h under refrigerated temperature condition.

Strains and Culture Preparation

Strains of S. Typhimurium (KCTC 2514 and ATCC 14028) and E. coli O157:H7 (NCTC 12079 and ATCC 43889) were selected for experiments. Each strain of S. Typhimurium and E. coli O157:H7 was streaked onto tryptic soy agar (TSA; Difco Co., USA) and incubated at 37°C for 24 h. Following incubation, each single colony of S. Typhimurium and E. coli O157:H7 was added to 25 ml of tryptic soy broth (TSB; Difco Co.) and incubated at 37°C for 24 h with shaking at 150 rpm. The incubated culture was centrifuged at 1,500 × g for 20 min and the cell pellets were separated and then washed twice with 0.1% sterile peptone water.

Inoculation of Strains

Prior to inoculation, washed cell pellets from each culture were added to 25 ml of 0.1% aseptic peptone water and then mixed to form an inoculum. Paprika samples were then spot inoculated with 0.5 ml of this inoculum. Paprika samples were then spot inoculated with 0.5 ml of this inoculum. The inoculated samples were placed in a laminar flow hood for 2 h to allow attachment of the pathogenic bacteria to the surface of paprika samples.

Chemical Treatment

ClO$_2$ gas treatment (0.03–0.14 mg/l, 10–50 ppmv) was conducted using a ClO$_2$ gas generating system (CA-300; Purgofarm, Korea) [23]. ClO$_2$ gas treatment was carried out in a treatment chamber (150 × 100 × 100 cm) for 5, 10, 20, or 30 min. To monitor the ClO$_2$ gas concentration in the treatment chamber, a ClO$_2$ gas sensor (Model F12; ATi Inc., USA) was used. A humidifier (CH-5762; Cuckoo Inc., Korea) was used to adjust relative humidity to 90% in a treatment chamber. Aqueous ClO$_2$ was produced and set at 50 mg/l based on a previous study [13], and its concentration was determined by using the iodometric titration method [24]. Aqueous ClO$_2$ treatment was conducted for 5 min by submerging the samples at a ratio of 1:5 (w/v). For the combined treatment of gaseous and aqueous ClO$_2$, the paprika samples were first treated with gaseous ClO$_2$ and then aqueous ClO$_2$ based on a preliminary experiment. All treatments were conducted in triplicates.

Quality Measurement

The color of paprika surfaces was measured with a colorimeter (CR-400 Chroma Meter; Konica Minolta Sensing Inc., Japan). Hunter color measurement was carried out for each sample. The standard L, a, and b values were $L = 96.87$, $a = -0.13$, and $b = 2.13$. The chroma (C) and hue angle (β') were calculated according to the following equations [25].

$$C = (a^2 + b^2)^{1/2}, \quad \beta' = \arctan (b/a) \times (180/\pi)$$

The total soluble solid content of each sample was determined with a refractometer (PR-101a; Atago, Japan). The hardness value was determined by a texture analyzer (TA-XT2; Stable Micro Systems Ltd., UK) with a cylinder probe (10 cm diameter; TA-40; Stable Micro Systems Ltd., UK). the pretest, test, and posttest speeds were 2, 5, and 5 mm/s, respectively. The distance between the probe and sample was 20 mm, and the trigger force was 0.2 N. Vitamin C measurement was carried out using a high-performance liquid chromatography system (Waters Inc., USA) with a UV detector and a C18 column (250 × 4.6 mm, 5 μm; Phenomenex Inc., USA). The mobile phases were buffers A (0.05 M potassium phosphate monobasic) and B (acetonitrile) at a ratio of 6:4. The flow rate of the mobile phase was 1 ml/min, and the detection of vitamin C was carried out at 254 nm. Standard ascorbic acid was used to calculate the vitamin C content of the samples. All treatments were conducted in triplicates.

Microorganism Inactivation Model

To examine the inactivation kinetics of microorganisms by ClO$_2$ gas treatment, the Weibull model was applied. The Weibull model for non-log linear survival curves can be expressed by the following equation [26].

$$\log (N/N_0) = - (t/\delta)^\beta$$

where N_0 is the initial number of bacteria, N is the number of surviving bacteria after time t, and δ and β are the first reduction time that causes 1 log reduction of surviving population and shape parameter, respectively.

Microbiological Analysis

Following ClO$_2$ treatment, the samples (20 ± 0.3 g) were placed in a stomacher bag including 180 ml of aseptic peptone water (0.1%) and then smashed for 3 min by using a Stomacher (MIX 2, AES Laboratoire, France). Homogenized samples were then diluted serially with peptone water (0.1%). To analyze the population of each pathogen, 0.1 ml of diluted samples was diffused onto each selective agar and then incubated at 37°C for 48 h. The media for S. Typhimurium and E. coli O157:H7 were xylose lysine deoxycholate agar (Difco Co.) and sorbitol MacConkey agar (Difco Co.), respectively. All data were depicted as log colony-forming units (CFU)/g.

Statistical Analysis

Statistical significance was conducted with SAS software (ver. 8.4; SAS Institute, Inc., USA). Analysis of variance and Duncan’s multiple range test were conducted to analyze significant
differences at $p < 0.05$. For these tests, data from at least three replicates are presented as the mean ± standard deviation.

Results and Discussion

Effect of ClO$_2$ Gas Treatment

First, we examined the ability of ClO$_2$ gas treatment (10 to 50 ppmv) to reduce the populations of pathogenic bacteria inoculated on paprika (Figs. 1–3). The initial microbial populations of *S. Typhimurium* and *E. coli* O157:H7 were 5.84 and 6.34 log CFU/g, respectively. Among all 5 min treatments, only 50 ppmv was able to reduce the population of *E. coli* O157:H7. This result indicates that ClO$_2$ gas treatment at concentrations lower than 50 ppmv for 5 min is insufficient to inactivate pathogenic bacteria that have been inoculated on paprika surfaces. On the contrary, a significant inhibitory effect was observed when the treatment was lengthened to between 10 and 30 min. In the case of *E. coli* O157:H7, the inhibitory effect increased gradually up to 20 ppmv ClO$_2$ and more rapidly at 30 ppmv. At 30 ppmv, ClO$_2$ gas treatment for 30 min reduced the population of *E. coli* O157:H7 by 2.06 log CFU/g, compared with that in the control. The effect was most robust with a 50 ppmv ClO$_2$ treatment for 30 min. Specifically, this treatment reduced the microbial population by 2.33 log CFU/g, compared with that of the control.

A similar pattern was also seen with *S. Typhimurium*, with a gradual decrease in microbial populations at gas concentrations between 10 to 30 ppmv, and a more significant

Fig. 1. Effect of ClO$_2$ gas treatment on the inactivation of *E. coli* O157:H7 inoculated on paprika.

Mean values with different letters in the same concentration (A–D) and time (a–b) are significantly ($p < 0.05$) different. Data are the mean ± standard deviation ($n = 3$).

Fig. 2. Effect of ClO$_2$ gas treatment on the inactivation of *S. Typhimurium* inoculated on paprika.

Mean values with different letters in the same concentration (A–D) and time (a–c) are significantly ($p < 0.05$) different. Data are the mean ± standard deviation ($n = 3$).

Fig. 3. Survival plots of pathogenic bacteria by ClO$_2$ gas treatment.

(A) *E. coli* O157:H7; (B) *S. Typhimurium*. ●, 10 ppmv; ▲, 20 ppmv; ◆, 30 ppmv; ■, 40 ppmv; □, 50 ppmv.
increase at 50 ppmv; the latter concentration decreased the population of S. Typhimurium by 2.91 log CFU/g. Han et al. [15] reported an approximately 3 log CFU/g reduction when 227 ppmv ClO₂ gas was used for 30 min against E. coli O157:H7 inoculated on green peppers. Wu and Kim [27] also reported that 15 ppmv ClO₂ gas treatment for 30 min reduced the population of S. Typhimurium inoculated on blueberries by about 3 log CFU/g.

To further examine the germicidal effect of ClO₂ gas treatment, survival curves of E. coli O157:H7 and S. Typhimurium were fitted with a Weibull model (Fig. 3) and the parameters were calculated (Table 1). Non-log linear survival curves were shown for all treatments and both pathogens (Fig. 3), and the survival plots exhibited typical upward concavity, resulting in β below 1.0. The β values for ClO₂ gas treatments were in the range between 0.46 and 0.79, indicating that the inhibitory effect of ClO₂ gas treatment increases slowly with treatment time. If β is above 1.0, the survival plots should have downward concavity and the inhibitory effect would have increased rapidly with treatment time. In addition, the δ parameters decreased with the increase of ClO₂ gas concentration. In particular, the δ parameter for the 10 ppmv ClO₂ gas treatment against E. coli O157:H7 and S. Typhimurium was 21.45 and 22.54 min, respectively, which means the time required to decrease pathogenic bacteria 10-fold, whereas δ for the 50 ppmv ClO₂ gas treatment was 7.27 and 6.67 min, respectively.

The germicidal effect of ClO₂ gas is based on its high oxidation capacity, which readily damages bacterial cell membranes. In addition, the gas inhibits enzyme activity in pathogenic bacteria [19]. To achieve microbial inactivation, two strategies are commonly applied: either a high concentration short time (HCST) or a low concentration long time (LCLT) treatment [16, 26, 27]. A HCST treatment is favorable for rapid inactivation of pathogenic bacteria on fresh produce. However, high concentrations of gaseous ClO₂ may be explosive and should be handled carefully [29]. Because of this limitation, the LCLT treatment provides an alternative method for inactivation of pathogenic bacteria. In addition, low concentration gaseous ClO₂ (0–0.12 mg/l) was not toxic in long-term animal experiments [30]. Based on these results, we suggest that a 50 ppmv ClO₂ gas treatment is an effective approach for improving the microbial safety of paprika.

Effects of Aqueous ClO₂ and Combined Treatment

We next tested whether the germicidal effect of gaseous ClO₂ treatment could be enhanced when combined with aqueous ClO₂ (Table 2). This is important, since the persistence of injured but viable cells on fresh produce as a result of inadequate sanitizing processes can affect food safety [31]. Such combined treatment is referred to as a hurdle technology, as the repeated stress to which the bacteria are exposed significantly reduces the likelihood that viable cells remain.

The initial microbial populations of S. Typhimurium and E. coli O157:H7 inoculated on paprika were 5.06 and 5.68 log CFU/g, respectively. For the combined treatment, paprika was first treated with gaseous ClO₂ and then with aqueous ClO₂. The sequence of this combined treatment

Table 1. Weibull model parameters for inactivation of E. coli O157:H7 and S. Typhimurium, inoculated on paprika, by ClO₂ gas treatment.

<table>
<thead>
<tr>
<th>Concentration (ppmv)</th>
<th>Microorganism</th>
<th>RMSE</th>
<th>R²</th>
<th>δ</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>E. coli O157:H7</td>
<td>0.03</td>
<td>0.99</td>
<td>21.45</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>S. Typhimurium</td>
<td>0.01</td>
<td>0.99</td>
<td>22.54</td>
<td>0.74</td>
</tr>
<tr>
<td>20</td>
<td>E. coli O157:H7</td>
<td>0.04</td>
<td>0.99</td>
<td>15.78</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>S. Typhimurium</td>
<td>0.10</td>
<td>0.97</td>
<td>14.03</td>
<td>0.67</td>
</tr>
<tr>
<td>30</td>
<td>E. coli O157:H7</td>
<td>0.05</td>
<td>0.98</td>
<td>11.39</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>S. Typhimurium</td>
<td>0.08</td>
<td>0.98</td>
<td>12.47</td>
<td>0.65</td>
</tr>
<tr>
<td>40</td>
<td>E. coli O157:H7</td>
<td>0.10</td>
<td>0.98</td>
<td>9.64</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>S. Typhimurium</td>
<td>0.09</td>
<td>0.99</td>
<td>7.82</td>
<td>0.61</td>
</tr>
<tr>
<td>50</td>
<td>E. coli O157:H7</td>
<td>0.03</td>
<td>0.99</td>
<td>7.27</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>S. Typhimurium</td>
<td>0.11</td>
<td>0.99</td>
<td>6.67</td>
<td>0.74</td>
</tr>
</tbody>
</table>

*RMSE, root mean square error.

δ, the first reduction time that causes 1 log reduction of microbial population.

β, shape parameter.

Table 2. Effect of the combined treatment of aqueous and gaseous ClO₂ on the inactivation of E. coli O157:H7 and S. Typhimurium inoculated on paprika.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>E. coli O157:H7</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5.68 ± 0.35A</td>
<td>5.06 ± 0.18A</td>
</tr>
<tr>
<td>Water washing</td>
<td>5.04 ± 0.07A</td>
<td>4.40 ± 0.40B</td>
</tr>
<tr>
<td>Aqueous ClO₂ 50 ppm</td>
<td>3.82 ± 0.17B</td>
<td>3.69 ± 0.26C</td>
</tr>
<tr>
<td>Combined treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 min</td>
<td>3.30 ± 0.75BC</td>
<td>2.86 ± 0.24D</td>
</tr>
<tr>
<td>10 min</td>
<td>3.02 ± 0.52CD</td>
<td>2.59 ± 0.47DE</td>
</tr>
<tr>
<td>20 min</td>
<td>2.60 ± 0.07D</td>
<td>2.33 ± 0.29E</td>
</tr>
<tr>
<td>30 min</td>
<td>1.57 ± 0.68E</td>
<td>1.45 ± 0.52F</td>
</tr>
</tbody>
</table>

*Combined treatment, aqueous ClO₂ 50 ppm + gaseous ClO₂ 50 ppmv.

Means with different letters (A–F) in the same column are significantly (p < 0.05) different.
Data are presented as the mean ± standard deviation (n = 3).
was determined based on preliminary experiments. If aqueous ClO$_2$ treatment is performed first, the subsequent water residue can cause uneven distribution of ClO$_2$ gas on the paprika surface due to the high solubility of this gas in water [14]. In particular, under conditions of high relative humidity, ClO$_2$ gas can easily reach the paprika surface, affecting the inhibitory effect against pathogenic bacteria. Aqueous ClO$_2$ treatment alone decreased the populations of S. Typhimurium and E. coli O157:H7 by 1.37 and 1.86 log CFU/g, respectively, compared with those in the control (Table 2). This result is similar to that of Kim et al. [13], who reported that aqueous 50 ppm ClO$_2$ treatment for 5 min reduced the population of E. coli O157:H7 and S. Typhimurium inoculated on broccoli sprouts by 1.66 and 1.54 log CFU/g, respectively. In contrast, the combined treatment of 50 ppmv ClO$_2$ gas for 5 min and aqueous ClO$_2$ reduced the populations of E. coli O157:H7 and S. Typhimurium by a further 0.52 and 0.83 log CFU/g, respectively, compared with the aqueous ClO$_2$ treatment alone. These results indicate that gaseous ClO$_2$ treatment for 5 min had an additional antimicrobial effect. The inhibitory effect increased proportionally with the time of treatment. For example, after 10 min, the population of E. coli O157:H7 was reduced by 2.66 log CFU/g, compared with that in the control, following the combined treatment in which 50 ppm ClO$_2$ gas was used. The decrease was even greater (3.08 log CFU/g) after a 20 min treatment. Maximum germicidal effect was observed after a 30 min combination treatment in which the ClO$_2$ gas concentration was 50 ppmv, where the reduction of E. coli O157:H7 cells was 4.11 log CFU/g. The trend was similar for S. Typhimurium. The combined treatment of 50 ppmv ClO$_2$ gas for 30 min decreased the population of S. Typhimurium by 3.61 log CFU/g, compared with that in the control.

The inhibitory effect of the combined treatment in this study increased rapidly with treatment time. These results were also observed in the study of Park and Kang [32], where the inhibitory effect by the combined treatment of gaseous ClO$_2$ (10 ppmv) and peracetic acid (80 ppm) increased rapidly with treatment time. The combined treatment for 5, 10, 15, and 20 min reduced the population of E. coli O157:H7 inoculated on tomatoes by 1.00, 2.60, 3.70, and 5.10 log CFU/g, respectively. In this study, the inhibitory effect of ClO$_2$ gas single treatment increased slowly with treatment time, whereas the inhibitory effect of the combined treatment increased rapidly. However, it should be noted that an excessive treatment time might affect the food quality negatively. Therefore, the combination treatment of 50 ppm aqueous and gaseous ClO$_2$ for 30 min is suggested to improve the microbial safety and quality of paprika in this study.

Hurdle technology depends on the type of treatments [33]. Generally, employing two agents with distinct mechanisms of action is preferable, as this lowers the possibility that bacterial resistance will develop. Indeed, using two agents that act in the same manner has been demonstrated to be less effective [32]. Despite this, we find that treatment with gaseous and aqueous ClO$_2$ treatment is still more effective than either agent alone, and may thus be a useful technique to improve the microbial safety of paprika.

Quality Measurements of Paprika Samples

Quality measurements of paprika samples after the combined treatment of gaseous and aqueous ClO$_2$ were also taken (Table 3). To apply the combined treatment to food commodities, it is vital that the quality of fresh produce is maintained; this is often achieved by exposing bacteria to a high dose of exogenous stress [34]. However, excessive oxidative stress damages membranes, enzymes, and DNA of plant cells, causing discoloration, loss of nutrition value, and reduced shelf-life in fresh produce [35, 36]. Reyes et al. [37] reported that the response sensitivity to oxidative stress depends on the type of fresh produce. In the current study, no adverse effect on paprika quality was observed, and the color and chroma values of paprika samples increased gradually in the expected manner during storage due to postharvest ripening. The hue angle value also reflects the color of samples and ranges from 0° (pure red) to 270° (pure blue) [25]. These values of paprika were maintained at 26° during storage. Although ClO$_2$ treatment is highly oxidative, it did not affect the color values of paprika samples. Mahmoud and Linton [38] reported that 183 ppmv gaseous ClO$_2$ treatment for 10 min affected the color values of iceberg lettuces after 7-day storage at 4°C, as its redness value increased. This result indicates that low concentrations of gaseous ClO$_2$ are preferable for decontamination of food commodities. Our current results meet this criterion. In addition, the treatment did not affect the hardness or total soluble solid content (TSS) of paprika. Vitamin C values did gradually decrease during storage of untreated paprika, but this was not accelerated by the combined treatment. This is similar to the work of Du et al. [39], who reported that a 50 ppmv gaseous ClO$_2$ sachet did not affect the vitamin C and TSS contents of green bell peppers after 40-day storage at 4°C. Furthermore, Aday et al. [40] observed no change in strawberry quality after treatment with 9 ppm aqueous ClO$_2$ even after a 25-day storage at 4°C. Together, these observations show that combined treatment consisting of
low concentrations of aqueous and gaseous ClO₂ is a useful technique for ensuring the microbiological safety and quality of paprika.

In conclusion, the combined treatment of gaseous and aqueous ClO₂ effectively reduced the populations of E. coli O157:H7 and S. Typhimurium inoculated on paprika. The overall qualities of paprika samples were not affected during storage following the combined treatment. Considering that the combined treatment of low concentrations of gaseous and aqueous ClO₂ has never been studied previously, these results clearly suggest that the combination treatment of 50 ppm aqueous and gaseous ClO₂ for 30 min can be used as an emerging hurdle technology to ensure the microbial safety of paprika without impairing quality.

References

Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants,

37. Reyes LF, Villarreal JE, Cisneros-Zevallos L. 2007. The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. *Food Chem.* **101**: 1254-1262.

