Effect of Antibiotic Down-Regulatory Gene *wblA* Ortholog on Antifungal Polyene Production in Rare Actinomycetes *Pseudonocardia autotrophica*

Hye-Jin Kim¹, Min-Kyung Kim¹, Young-Woo Kim², and Eung-Soo Kim¹∗

¹Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
²Division of Bioscience and Bioinformatics, Myongji University, Gyeonggi-do 449-728, Republic of Korea

Introduction

Polyene macrolides, a large family of polyketides with antifungal activities, are structurally characterized by polyhydroxylated macrocyclic lactones composed of 20–40 carbons with three to eight conjugated double bonds [3, 15]. These compounds include antibiotics such as nystatin A1, amphotericin A and B, pimaricin, candidicidin/FR-008, and CE-108/rimocidin [9]. Despite the recent introduction of new antifungal drugs such as next-generation azoles and echinocandins, polyene macrolides continue to be the most potent broad-spectrum antifungal agents available for clinical use, which mostly covers life-threatening fungal infections, particularly in patients who have undergone organ transplantation, received aggressive chemotherapy, or have AIDS [13]. The disadvantages of polyene macrolides are their relatively high toxicity, especially toward kidney cells, and poor distributions in tissues owing to low water solubility. In order to improve the therapeutic efficacy and reduce the toxicity of polyenes, several strategies, including combination therapy, structural modifications, and altering the physical state of the therapeutic agent in the drug delivery system, have been employed [2, 12, 14].

Using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, the gram-positive rare actinomycete *Pseudonocardia autotrophica* was previously shown to produce a solubility-improved toxicity-reduced novel polyene compound named *Nystatin-like Pseudonocardia Polyene* (NPP). The low productivity of NPP in *P. autotrophica* implies that its biosynthetic pathway is tightly regulated. In this study, *wblA* was isolated and identified as a novel negative regulatory gene for NPP production in *P. autotrophica*, which showed approximately 49% amino acid identity with a global antibiotic down-regulatory gene, *wblA*, identified from various *Streptomyces* species. Although no significant difference in NPP production was observed between *P. autotrophica* harboring empty vector and the *S. coelicolor* *wblA* under its native promoter, approximately 12% less NPP was produced in *P. autotrophica* expressing the *wblA* gene under the strong constitutive ermE* promoter. Furthermore, disruption of the *wblA* gene from *P. autotrophica* resulted in an approximately 80% increase in NPP productivity. These results strongly suggest that identification and inactivation of the global antibiotic down-regulatory gene *wblA* ortholog are a critical strategy for improving secondary metabolite overproduction in not only *Streptomyces* but also non-*Streptomyces* rare actinomycete species.

Keywords: *wblA*, antifungal polyene macrolide, rare actinomycetes, *Pseudonocardia autotrophica*
the NPP biosynthetic pathway is likely to be tightly regulated based on the very low NPP productivity observed under most \textit{P. autotrophica} culture conditions [6].

A \textit{whiB}-like putative transcription factor gene named \textit{wblA} was originally proposed as a global negative regulatory gene involved in polyketide biosynthesis in \textit{S. coelicolor} [7, 11]. Overexpression of \textit{wblA} inhibited actinorhodin biosynthesis in \textit{S. coelicolor}, and the transcript encoded by an actinorhodin-specific activator gene was reduced in \textit{wblA-overexpressing S. coelicolor}, suggesting that \textit{wblA} is a broadly functioning down-regulatory gene for polyketide biosynthesis in \textit{Streptomyces} species [7, 11]. Subsequently, several \textit{wblA} orthologs showing more than 90% amino acid identities, such as \textit{wblA}\textsubscript{\textit{P. autotrophica}}, \textit{wblA}\textsubscript{\textit{S. peucetius}} and \textit{wblA}\textsubscript{\textit{S. coelicolor}} in \textit{Streptomyces} sp. CK4412, were also proved to down-regulate the production of doxorubicin and tautomycetin, respectively. Here, we report that there is a less homologous \textit{wblA} ortholog present in the rare actinomycete \textit{P. autotrophica}, and its deletion also stimulated the intrinsically low level of NPP production. This is a first report on the identification and application of a \textit{wblA} ortholog in a non-\textit{Streptomyces} rare actinomycete strain.

\section*{Materials and Methods}

\subsection*{Bacterial Strains, Plasmids, and Media}

The rare actinomycete \textit{Pseudonocardia autotrophica} KCTC9441, purchased from the Korean Collection for Type Cultures, was used as an NPP-producing strain. The \textit{P. autotrophica} strains were grown in ISP medium 2 (glucose 0.4 %, yeast extract 0.4 %, malt extract 1 %, and agar 2 %) at 30°C for sporulation and YEM liquid medium for NPP production [5, 8]. \textit{E. coli} DH5\textalpha{} and the \textit{Streptomyces} integrative plasmid \textit{ermEpSET152} were used for the cloning and expression of target genes [5]. Methylation-deficient \textit{E. coli} ET12567 / pUZ8002 was used as a host for intergeneric \textit{E. coli-Streptomyces} conjugations [1]. All \textit{E. coli} strains were cultured at 37°C in Luria broth or on Luria agar and supplemented with the appropriate antibiotics when needed [5].

\subsection*{Identification of \textit{wblA} Ortholog from \textit{P. autotrophica} Genomic Library}

The \textit{P. autotrophica} whole genome, with a total size of approximately 10 Mbp and containing more than 10,000 ORFs, was analyzed. \textit{In silico} analysis of amino acid sequences was performed by using the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) and ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html). A cosmid library was prepared using the commercially available Supercos-1 cosmid system (Stratagene, USA). The cosmid library was screened by polymerase chain reaction (PCR) using forward primer 5\textendash{}GGATCCCGATGACACCGCCGGACCC-3\textendash{} and reverse primer 5\textendash{}TCTAGAATTCGACAGGACCCGGACG-3\textendash{} containing 0.4 \mu{}M of each primer as well as 0.25 mM of each of the four dNTPs (Roche, Switzerland), 1 \mu{}l of extracted DNA, 1 U of Ex Taq polymerase (TaKaRa, Japan) within its recommended reaction buffer, and 10% dimethyl sulfoxide (DMSO). Amplifications were performed in a Thermal Cycler (BioRad, USA) according to the following profile: 30 cycles of 60 sec at 95°C, 30 sec at 62°C, and 40 sec at 72°C. Amplified products were analyzed by electrophoresis in 1% (w/v) agarose gels and verified by sequencing using a 17 promoter primer/T3 primer in a pSuperCos-1 vector.

\subsection*{Inactivation of \textit{wblA} Ortholog in \textit{P. autotrophica}}

The \textit{wblA} ortholog (\textit{wblA}\textsubscript{\textit{pau}}) identified from \textit{P. autotrophica} was inactivated using a PCR-targeted gene disruption system [4]. An apramycin resistance gene/ori \textit{T} cassette for replacement of \textit{wblA}\textsubscript{\textit{pau}} was amplified using the following primers: disF 5\textendash{} ACAAGAACCCGGAGCCTTTCTTCCCCGCGAAGCCAGATTCCCGGGATCGTGACCCGACGACGACGATGGTACGAGCGTGCCTTC-3\textendash{} and disR 5\textendash{} AGGGCGTAGGCCACAAGAACCCCGAGCTCTTCTTCCCCGCGAAGCCAGATTCCCGGGATCGTGACCCGACGACGATGGTACGAGCGTGCCTTC-3\textendash{}. This cassette was introduced into \textit{E. coli} BW25113/pIJ790 containing the \textit{wblA}\textsubscript{\textit{pau}} gene, which also contained the \textit{P. autotrophica} cosmid. Gene replacement in \textit{wblA}\textsubscript{\textit{pau}} was confirmed by PCR analysis of the mutated (\textit{wblA}\textsubscript{\textit{pau}}) cosmid. The mutated (\textit{wblA}\textsubscript{\textit{pau}}) cosmid was introduced into \textit{P. autotrophica} by conjugation from \textit{E. coli} ET12567/pUZ8002. After incubation at 30°C for 16 h, each plate was flooded with 1 ml of sterile water containing apramycin at a final concentration of 50 mg/ml and nalidixic acid at a final concentration of 25 mg/ml. Incubation continued at 30°C until conjugants appeared. The double-crossover recombinants were first selected with apramycin resistance (\textit{apr}R) and kanamycin sensitivity (\textit{kan}R), followed by PCR confirmation.

\subsection*{High-Performance Liquid Chromatography (HPLC) Assay for NPP}

A 603 bp PCR-amplified \textit{wblA} (SCO3579) included the putative promoter from \textit{S. coelicolor}, a ribosome-binding site, start codon, and stop codon sequences. Otherwise, a 398 bp fragment encompassing SCO3579 with a ribosome-binding site, except the promoter, was amplified. The PCR product was cloned into the RBC T&A cloning vector, analyzed by sequencing, and ligated in the \textit{Streptomyces} integrative plasmid pSET152, yielding plasmid pSET152 (containing \textit{S. coelicolor} promoter) and pE3579 (containing \textit{ermE}R promoter).
Results

Identification of \(wblA \) ortholog \(wblA_{pau} \) in \(P. \) autotrophica

Since the whole genomic information of \(P. \) autotrophica was analyzed (unpublished data), the putative \(wblA \) ortholog could be identified through a BLASTp search using the amino acid sequence of \(WblA \) (SCO3579) from \(S. \) coelicolor with the GenoTech Prokaryotic Genome Automatic Annotation System. Using database-assisted in silico analysis, \(P. \) autotrophica genomic DNA was shown to contain the \(wblA \) ortholog gene, named \(wblA_{pau} \). \(S. \) coelicolor \(WblA \) is believed to be functionally responsible as a WhiB family transcriptional regulator and contains highly conserved regions (\(\alpha \)-helix and Cys-X-X-Cys motif) found in all \(wblA \) ortholog genes from \(Streptomyces \) species. Unlike previously reported \(Streptomyces \) \(wblA \) orthologs showing more than 90% amino acid identities, the 82-amino-acid-containing \(wblA_{pau} \) showed a relatively low degree of amino acid identity (approximately 49%) with the translated products of \(wblA \) genes from \(S. \) coelicolor, \(S. \) avermitilis MA-4680, \(S. \) griseus NBRC 13350, \(S. \) peucetius ATCC27952, and \(S. \) peucetius ATCC27952, as well as 39% amino acid identity with the \(wblA \) gene from \(Corynebacterium \) glutamicum ATCC13032 (Fig. 1 and Table 1).

Functional Expression of \(wblA \) (SCO3579) in Rare Actinomycete \(P. \) autotrophica

To demonstrate that \(S. \) coelicolor \(wblA \) (SCO3579) is responsible for regulation of NPP biosynthesis, this gene was cloned from its promoter to the stop codon, using the \(Streptomyces \) integrative plasmid pSET152, after which it was introduced into the NPP-producing strain \(P. \) autotrophica. The level of NPP production was not significantly different compared with that of \(P. \) autotrophica harboring empty vector alone (Fig. 2). To ascertain whether additional expression of \(wblA \) (SCO3579) is not responsible for NPP production or whether the \(S. \) coelicolor promoter is not working in \(P. \) autotrophica, \(wblA \) (SCO3579) was expressed under the strong constitutive \(ermE^{*} \) promoter. Comparison of NPP production between wild type and \(wblA \) (SCO3579)-containing exconjugants revealed that expression of \(wblA \)

Table 1. List of putative WhiB-family transcriptional regulator in various strains.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Strains</th>
<th>Identities</th>
<th>Similarity</th>
<th>E-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putative WhiB-family transcriptional regulator (SCO3579)</td>
<td>Streptomyces coelicolor A3(2)</td>
<td>49%</td>
<td>54%</td>
<td>4e-14</td>
</tr>
<tr>
<td>Putative WhiB-family transcriptional regulator (WblA_{pau})</td>
<td>Streptomyces coelicolor ATCC27952</td>
<td>49%</td>
<td>54%</td>
<td>3e-14</td>
</tr>
<tr>
<td>Putative WhiB-family transcriptional regulator (SAV4584)</td>
<td>Streptomyces avermitilis MA-4680</td>
<td>49%</td>
<td>54%</td>
<td>9e-14</td>
</tr>
<tr>
<td>Putative WhiB-family transcriptional regulator (WblA_{pau})</td>
<td>Streptomyces sp. CK4412</td>
<td>49%</td>
<td>54%</td>
<td>7e-14</td>
</tr>
<tr>
<td>Putative WhiB-family transcriptional regulator (SGR3340)</td>
<td>Streptomyces griseus NBRC13350</td>
<td>49%</td>
<td>54%</td>
<td>7e-14</td>
</tr>
<tr>
<td>Putative WhiB-family transcriptional regulator (WhcA)</td>
<td>Corynebacterium glutamicum ATCC13032</td>
<td>39%</td>
<td>47%</td>
<td>1e-12</td>
</tr>
</tbody>
</table>

Fig. 1. Amino acid sequence alignments between \(wblA \) ortholog (\(wblA_{pau} \)) from \(P. \) autotrophica and various \(Streptomyces \) \(WblA \)s. Conserved (asterisk) and homologous (colon) amino acids are marked. Cysteine conserved regions (gray highlight) were identified in the \(WblA \)s.
(SCO3579) reduced NPP production by approximately 12% in *P. autotrophica* (Fig. 2).

Stimulated NPP Production via wblA*pau Disruption from P. autotrophica

The *wblA* ortholog gene from *P. autotrophica* (*wblA*pau) was inactivated using a PCR-targeted gene disruption system. Construction of the *wblA*pau mutant (named *P. autotrophica* Δ*wblA*pau) was confirmed by PCR analysis. The PCR-amplified 0.3 kb band was observed in genomic DNA isolated from *P. autotrophica*, whereas a band of expected size (1.6 kb) was detected in *P. autotrophica* Δ*wblA*pau. A 1.8 kb fragment was observed in the cosmid used for the PCR-targeted *wblA*pau gene disruption, whereas no PCR-amplified fragments were detected in *P. autotrophica* wild-type or Δ*wblA*pau strain (Figs. 3A and 3B). This result suggests that the *wblA*pau gene from *P. autotrophica* was inactivated by the apramycin resistance gene/oriT cassette. No notable visual phenotypic difference was observed between *P. autotrophica* and *P. autotrophica* Δ*wblA*pau. However, approximately 180% greater NPP production was observed from *P. autotrophica* Δ*wblA*pau compared with *P. autotrophica* wild type over the same 3-day period in YEME production culture media (Fig. 3C).

Discussion

Natural products continue to play a highly significant role in drug discovery and development. Among them, polyene macrolides are the most potent broad-spectrum antifungals available for clinical use. Previously, the rare actinomycete *P. autotrophica* KCTC9441 was determined to contain genes related to polyene biosynthesis, such as Nystatin-like *Pseudonocardia* Polyene (NPP). However, the low level of NPP production implies that this metabolic pathway is tightly controlled by regulatory genes, such as the global down-regulatory gene *wblA* in *Streptomyces*. About 80% greater NPP production was observed in *P. autotrophica* Δ*wblA*pau compared with *P. autotrophica* wild type, and approximately 12% less NPP production was identified upon expression of *wblA* (SCO3579) under the strong constitutive *ermE* promoter. These results suggest that *wblA*pau could be a negative regulatory gene for NPP production in *P. autotrophica*. Interestingly, there was no significant difference in NPP production between *P. autotrophica* with empty vector and *P. autotrophica* expressing *wblA*.
Effect of Antibiotic Down-Regulatory Gene wblA Ortholog

September 2014 | Vol. 24 | No. 9

SCO3579) under the S. coelicolor promoter. It is not clear whether or not the S. coelicolor promoter operates in P. autotrophica or NPP biosynthesis is already tightly regulated in P. autotrophica. Previously, we identified six putative NPP pathway-specific regulatory genes to be present in its biosynthetic gene cluster. Although we could not check the transcriptome profile in the wblA overexpression strain, we expected wblA overexpression regulated NPP pathway-specific regulatory genes. As a result, low NPP production was revealed upon expression of wblA under the strong constitutive ermE* promoter. In conclusion, the identification and inactivation of the global antibiotic down-regulatory gene wblA ortholog should be a critical strategy for improving secondary metabolite overproduction in not only Streptomyces but also in non-Streptomyces rare actinomycete species.

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ009522), Rural Development Administration, Republic of Korea.

References

