Many of the glycosides that naturally occur in plants have biological activities [17]. These activities are primarily due to the aglycones of the glycosides. The water solubilities of hydrophobic molecules containing one or more hydroxyl groups can be increased by glycosylation, which can influence their physicochemical and pharmacological properties, such as transport through membrane barriers and transport by body fluids [17]. Glycosylation also often reduces the irritation and toxicity caused by the aglycone [17].

Enzymatic synthesis of glycosides has an advantage over chemical synthesis because it can control the regio- and stereosepecificities of the reaction [19]. Glycosidases are used in reactions of reverse hydrolysis or transglycosylation [3, 5, 16]. Family 1 glycosyl hydrolase (GH1), which can catalyze the transglycosylation reaction as well as hydrolysis, is ideal for use in the synthesis of glycoside derivatives [22]. Specifically, β-glucosidases have received great interest because of their biosynthetic abilities and their various biological functions [9, 10, 20, 23]. In our early reports, we described the Thermotoga neapolitana β-glucosidase-catalyzed synthesis of arbutin derivatives [21]. However, in the previous studies, the yield of the arbutin derivatives was very low. The low yield of the reaction is a demerit of the reaction of GH1 enzymes [14]. Moreover, the presence of undesired regioisomers, which make the purification step difficult, has encouraged us to improve the properties of the enzyme using different strategies. Many review articles have been published about the use of glycoside synthesis for the purpose of increasing the yield and highly regioselective synthesis of glycosides [1, 6, 7, 19, 22]. The β-glucosidase of Thermus thermophilus increased its transglycosylation ability to synthesize oligosaccharides through random mutagenesis [11]. The most efficient mutants, F401S and N282T, increased the yield of trisaccharides by 6-fold compared with the wild-type enzyme. Mutations M424K and F426Y also significantly improved (18–40%) the synthesis of galactooligosaccharides from the Pyrococcus furiosus β-glucosidase [13].

Changes in the yield of transglycosylation products usually affect the regioselectivity in the enzymatic synthesis of the glycosides. In general, glycosidases exhibit low
regions selectivity for the hydroxyl linkage of acceptor substrates in the transglycosylation reaction. It is also known that the regionselectivity in the enzymatic synthesis of oligosaccharides using glycosidases is dependent on the origin of the microbe and the selection of acceptors [2, 18]. Therefore, it is important to determine what controls the regionselectivity of glycoside synthesis in the enzyme reaction. Although regionselectivity in the synthesis of glycosides using glycosidases is known to be very low, transglycosylation products were shown to be highly regionselective when glycosidases that showed high specificity were used in the hydrolysis reaction [1].

In this paper, we report our success in isolating BglA mutants that show increased transglycosylation activity compared with the wild-type enzyme. Moreover, one of the BglA mutants was identified as being strongly involved in the regionselectivity of glycoside synthesis. Thus, directed evolution is an efficient approach to the synthesis of various transglycosylation products through the modification of the enzyme regionselectivity. It also acts to improve the yield of the transglycosylation products of glycosidases.

Materials and Methods

Strain and Growth Conditions

Thermotoga neapolitana KCCM 41025 (corresponding to NS-E, ATCC 49049, DSM 4359) was cultivated under anaerobic conditions in a 308 medium as described previously [21]. E. coli DH5a and MC1061, which were used as hosts for cloning and expression studies, were grown in Luria-Bertani (LB) medium containing 1% (w/v) bacto-tryptone, 0.5% (w/v) yeast extract, and 0.5% (w/v) NaCl, and supplemented with ampicillin (100 µg/ml).

Enzymes and Chemicals

Restriction endonucleases and modifying enzymes were purchased from Koso (Sungnam, Republic of Korea) or Takara (Shiga, Japan). A QuickChange II Site-Directed Mutagenesis Kit for mutagenic PCR amplification was purchased from Stratagene (La Jolla, U.S.A.). The QIAquick Gel Extraction Kit, a purification kit for PCR products or DNA restriction fragments, was obtained from Qiagen (Hilden, Germany). A silica gel 60 F254 thin-layer chromatography plate from Merck (Harr, Germany) was used for sugar analysis. The determination of β-glucosidase activity was performed with p-nitrophenyl-β-D-glucopyranoside (pNPG) and p-nitrophenol (pNP), both obtained from Sigma (St. Louis, U.S.A.). The arbutin, esculin, and salicin for the transglycosylation experiment were also purchased from Sigma. A glucose oxidase assay kit was purchased from Young Dong Pharmaceuticals (Yongin, Republic of Korea). All other chemicals used in this study were of reagent grade and purchased from Sigma.

Site-directed Mutagenesis and Cloning of Mutants

The p6xHis19-bglAp6 plasmid, which contains the 1.35 kb wild-type bglA gene from T. neapolitana [21] under the control of the Bacillus licheniformis maltogenic amylase promoter in the p6xHis19 vector, was used as the DNA template for site-directed mutagenesis. Mutagenic oligonucleotide primers, N291T-F (5'-CACGTCACCTGAAATAGTGGTAAAGGCTTCGAACTAGTGTAAGGTACCGT-C3'), N291T-R (5'-GCATCCGTTGCGCTGACCTACTATIGCTAGTCAC-3'), F412S-F (5'-ACACGACACTATTGAACTGTTTGCTGAGG-3'), and F412S-R (5'-GGATATCGAAGGTCTGATIGTGAACTGTCG-3'), were designed based on the result of directed evolution of Thermus thermophilus β-glucosidase [11]. The mutagenic primers contained the desired mutation and annealed to the same sequence on opposite strands of the plasmid. Each primer (10 pmol) was mixed with the p6xHis19-bglAp6 plasmid (10 ng) in a 50-µl PCR. The reaction conditions were as follows: 10× *Pfu* reaction buffer, 2.5 mM dNTP, 1.5 mM MgCl2, and 2.5 units of *Pfu*IIa HF DNA polymerase. PCR amplification was carried out on a thermal cycler (GeneAmp PCR System 2400, Perkin Elmer) with a program comprising of predenaturation for 30 s at 95°C, followed by 30 cycles of denaturation at 95°C for 1 min, annealing at 55°C for 1 min, and extension at 68°C for 6 min. Five µl of each PCR product was analyzed on 0.8% (w/v) agarose gel containing ethidium bromide (0.25 mg/ml). Mutagenized PCR products were digested by a DpnI restriction enzyme at 37°C for 3 h to digest the parental (i.e., nonmutated) double-stranded DNA. Without ligation, digested PCR products were transformed into E. coli MC1061 by the heat-shock method. To select for transformants, 100 to 200 µl of the transformation mixture was spread on LB agar plates with ampicillin at a final concentration of 100 µg/ml. The double mutant, N291T/F412S, was constructed by three-piece ligation. The bglA genes of mutants N291T and F412S were digested by Ndel/Ncol and Ncol/HindIII restriction enzymes, respectively. The two digested fragments were ligated with the p6xHis19 vector. DNA sequencing was performed on a DNA auto-sequencer (ABI PRISM 377; Perkin Elmer) at Greengene Biotech (Suwon, Republic of Korea). Oligonucleotides for sequencing were synthesized by Bionics (Seoul, Republic of Korea). Computer analyses of the DNA sequence data and the deduced amino acid sequence were performed with programs available on the ExPaSy Molecular Biology server (http://www.expasy.org) on the World Wide Web.

Purification of the Mutant Enzymes

All purification steps of recombinant His6-tagged BglA mutants were performed at room temperature. E. coli harboring the p6xHis19 vector containing a mutated bglA gene was cultured at 37°C in a shaking incubator for 18 h, and was then harvested by centrifugation at 10,000 × g for 30 min at 4°C. The cell pellet was thoroughly resuspended in 100 mM Tris-HCl buffer (pH 7.5) and disrupted by sonication on an ice bath. The cell lysate was centrifuged at 16,000 × g for 30 min at 4°C to pellet down the cellular debris. The supernatant was incubated at 80°C for 30 min, and heat-labile proteins of *E. coli* were removed by centrifugation at 16,000 × g for 30 min at 4°C. The supernatant was filtered through a 0.4-µm pore-sized filter and then passed through a nickel-NTA resin (Qiagen). The column was washed twice with two volumes of washing buffer [100 mM Tris-HCl buffer (pH 7.5), 10 mM imidazole], and BglA was eluted with the same buffer containing 250 mM imidazole. Proteins from the eluted fractions were pooled and dialyzed against Tris-HCl buffer (pH 7.5) to remove the excess imidazole, and were then concentrated using the Vivaspin 2 concentrator (Sigma-Aldrich). The purities of the wild-type and mutant enzymes were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on 12% (w/v) polyacrylamide gels. The protein concentration was determined by the Bradford method [4] using a Bradford reagent.
enzymes required to release 1 µmol of a microplate reader (Benchmark, Bio-Rad), and translated to buffer. The color that developed was read at 405 nm using the transglycosylation products. Transglycosylation products were also used instead of sodium phosphate buffer in an effort to increase 100 mM sodium phosphate buffer (pH 7.0). Methanol (20%) was µsolution was pre-incubated at 80°C for 5 min, the reaction was initiated by the addition of 10 µl (20 ng) of the diluted enzyme solution and continued for 30 min, and was then terminated by the addition of 30 µl of cold stop solution (1:1, 100% ethanol/reaction buffer). The color that developed was read at 405 nm using a microplate reader (Benchmark, Bio-Rad), and translated to micromoles of pNP using a standard graph prepared under the same conditions. One unit of enzyme activity was defined as the amount of enzyme required to release 1 µmol of pNP per h at 80°C under the above assay conditions. The substrate specificities of the mutant enzymes were determined using various chromogenic substrates, including pNPG as mentioned above.

The transglycosylation activities for the enzyme reaction with pNPG and arbutin were determined by measuring the amounts of released pNP (overall activity) and glucose (hydrolytic activity). Reaction mixtures (1 ml) containing 20 mM pNPG and 20 mM arbutin in a 100 mM sodium phosphate buffer (pH 7.0) were incubated at 80°C. The enzyme concentration was varied depending on the type of enzyme, wild type or mutant. Aliquots (10 µl) of the enzyme reaction mixture were withdrawn at different times. The amount of pNP released from pNPG was measured as described above, and the amount of glucose remaining after the transglycosylation reaction was measured using a glucose oxidase assay kit. The withdrawn aliquots were mixed with 1.5 ml of glucose oxidase buffer, incubated at 37°C for 5 min, and then read at 505 nm. The activity was calculated using a glucose standard graph prepared under the same assay conditions. Transglycosylation activity was calculated by subtracting the hydrolytic activity from the overall activity.

Purification of the Transfer Products

The transglycosylation reaction was performed at 80°C for 12 h (arbutin and salicin) and 1 h (esculin) with a total of 4 ml of reaction mixture containing the enzyme solution (1.8 µg), 1% cellobiose, and 2% acceptors (arbutin, esculin, or salicin) in a 100 mM sodium phosphate buffer (pH 7.0). Methanol (20%) was also used instead of sodium phosphate buffer in an effort to increase the transglycosylation products. Transglycosylation products were separated by the recycling preparative high-performance liquid chromatography (HPLC) system equipped with a refractive index detector (JAI, Korea). Approximately 3 ml of the reaction mixture was loaded onto a JAICEL-W251 (JAI, Korea) column (20×50 cm) and eluted with deionized water at a flow rate of 3.0 ml/min, which resulted in a column pressure of 30 kgf/cm². Each separated fraction was verified by thin-layer chromatography (TLC) and then lyophilized for mass spectrometry and nuclear magnetic resonance (NMR) analysis.

Analytical Methods

The molecular mass of the purified enzyme was determined by a Voyager System 6204 mass spectrometer. The detection and identification of hydrolysis and transglycosylation products were carried out by TLC analysis. One-tenth to 1 µl aliquots of the reaction mixture were spotted onto a Silica gel 60 F254 plate and developed with a solvent system of n-butanol:ethyl acetate:water (53:2:3, v/v/v) in a TLC developing chamber. Ascending development was repeated twice at room temperature. The plate was allowed to air-dry in a hood, and was then developed by soaking rapidly in methanol solution containing 20% (v/v) sulfuric acid. The plate was dried and placed in an oven at 110°C for 10 min for visualization of the reaction spots.

RESULTS

Strategy for Obtaining Increased Transglycosylation Activity of BglA

The transferase activity of T. neapolitana BglA analyzed by NMR spectroscopy produced three arbutin derivatives with β(1,3), β(1,4), and β(1,6) regioselectivities (Fig. 1) [21]. In order to improve the transglycosylation/hydrolysis ratio of BglA, we performed a site-directed mutagenesis on the bgA gene, which we had cloned and overexpressed in a previous study [21]. In recent years, several attempts to increase the transglycosylation activities of natural glycosidases have been made using directed mutagenesis methods [12, 13, 15]. Sequence alignment of BglA with other GH1 enzymes revealed two possible candidate amino acids, Asn-291 and Phe-412. Analysis of the three-dimensional structure of T. thermophilus β-glycosidase (Tt-β-Gly) showed that both residues were located just in front of the subsite (-1), which affects the entering acceptor in the subsite (+1) [11]. Both residues were demonstrated

Fig. 1. Transglycosylation reaction catalyzed by the T. neapolitana BglA.
to be responsible for the strong enhancement of the transglycosylation/hydrolysis ratio by directed evolution of Tt-β-Gly [11].

Expression and Purification of the Wild-Type and Mutant Enzymes
A p6xHis119 vector containing the mutated bglA gene, a plasmid carrying a 1.35-kb NdeI and HindIII fragment of the bglA, was constructed and successfully expressed in E. coli MC1061 as described previously [21]. Heat treatment and nickel-NTA affinity chromatography were used to purify the BglA mutants. Heat treatment of the cell extract at 75°C for 30 min removed most of the E. coli proteins. The mutant enzymes were purified 25- to 130-fold, with a recovery yield of 30–80%. SDS-PAGE analysis showed that the purified proteins were homogeneous and the molecular mass of each mutant was the same as that of the wild-type enzyme (Fig. 2). Mass spectrometry analysis showed a molecular mass of 56 kDa, indicating that the enzyme was present as a monomer.

Characterization of the Mutant Enzymes
In order to characterize the reaction properties of the mutants (N291T, F412S, and N291T/F412S), the substrate specificity was measured at 80°C with various substrates. A comparison of the enzyme activities on the aryl-glycoside pNP-substrate and other oligosaccharide substrates indicated that pNP was the best substrate for BglA. The specific activities for the wild-type and mutant enzymes with five different pNP-glycoside substrates are summarized in Table 1. Four pNP-β-glycosides were hydrolyzed efficiently, but the activities for pNPαG were relatively very low (2–3.5% for pNP).

These findings demonstrated that the wild-type and mutants were specific for β-type substrates. The specific activities of all three mutants showed 11.2% (N291T), 1.5% (F412S), and 0.05% (N291T/F412S) of the activity of the wild-type enzyme with pNP as a substrate. The wild-type enzyme showed similar specific activity for pNP, pNL, and pNPC, whereas the mutant enzymes only showed high activity for pNP.

To obtain quantitative information on both transglycosylation and hydrolysis activities, the amounts of pNP and glucose released after the enzyme reaction with pNP and arbutin were measured spectrophotometrically (Table 2). Because pNP was a much more efficient substrate than arbutin for the wild-type and mutant enzymes, measurements of the amounts of pNP and glucose obtained after the transglycosylation reaction represent the overall activity and hydrolytic activity, respectively. As expected, the transglycosylation/hydrolysis ratio was increased by all three mutants. Most interestingly, N291T and N291T/F412S had transglycosylation/hydrolysis ratios approximately 3-fold and 8-fold higher than that of the wild-type enzyme, which demonstrated the validity and efficiency of the process designed to select for mutants with improved transglycosylation activity. This observation is the result of the decreased hydrolytic activity of the mutant rather than increased transglycosylation activity. Although F412S and N291T/F412S enhanced the transglycosylation/hydrolysis ratio, the activities were too low to efficiently produce the transglycosylation products.

Table 1. Substrate specificity of wild-type and mutant T. neapolitana BglA enzymes towards pNP-glycosides.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>WT</th>
<th>N291T</th>
<th>F412S</th>
<th>N291T/F412S</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNP</td>
<td>5,220</td>
<td>584</td>
<td>78.7</td>
<td>2.60</td>
</tr>
<tr>
<td>pNP</td>
<td>4,760 (91)*</td>
<td>92 (16)</td>
<td>4.7 (6)</td>
<td>1.87 (72)</td>
</tr>
<tr>
<td>pNP</td>
<td>4,820 (92)</td>
<td>60 (10)</td>
<td>5.3 (7)</td>
<td>2.13 (82)</td>
</tr>
<tr>
<td>pNP</td>
<td>1,560 (30)</td>
<td>36 (6)</td>
<td>4.0 (5)</td>
<td>1.93 (74)</td>
</tr>
<tr>
<td>pNP</td>
<td>140 (2)</td>
<td>12 (2)</td>
<td>2.7 (3)</td>
<td>1.80 (69)</td>
</tr>
</tbody>
</table>

*Numbers in parentheses indicate the relative activities compared with pNP substrate. pNP, p-nitrophenyl-β-D-glucopyranoside; pNPL, p-nitrophenyl-β-D-1-lactoside; pNPC, p-nitrophenyl-β-D-celllobioside; pNPX, p-nitrophenyl-β-D-xylloside; pNPαG, p-nitrophenyl-α-D-glucopyranoside; Sp act, specific activity.

Fig. 2. SDS-PAGE of purified wild-type and mutant enzymes. Lane 1, molecular mass size marker; lane 2, T. neapolitana BglA; lane 3, N291T mutant; lane 4, F412S mutant; lane 5, N291T/F412S double mutant.
Transglycosylation and hydrolysis activities of the wild-type and mutant *T. neapolitana* BglA enzymes.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Transglycosylationa (µmol/h·mg)</th>
<th>Hydrolysisb (µmol/h·mg)</th>
<th>Overall activityc (µmol/h·mg)</th>
<th>Transglycosylation/ hydrolysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>183</td>
<td>2.361±0.73</td>
<td>2.544±0.10</td>
<td>7.7</td>
</tr>
<tr>
<td>N291T</td>
<td>186 (102)d</td>
<td>797±18 (34)</td>
<td>983±18</td>
<td>23.3</td>
</tr>
<tr>
<td>F412S</td>
<td>2.7 (1.5)</td>
<td>25.3±0.6 (1.1)</td>
<td>28±1</td>
<td>10.7</td>
</tr>
<tr>
<td>N291T/F412S</td>
<td>1.5 (0.8)</td>
<td>2.3±0.04 (0.1)</td>
<td>3.8±0.3</td>
<td>65.2</td>
</tr>
</tbody>
</table>

The activities were measured at 80°C using pNPG and arbutin.

aTransglycosylation activity was calculated by subtracting the hydrolytic activity from the overall activity.

bHydrolytic activity was determined by the amount of glucose released from pNPG using a glucose oxidase assay.

cOverall activity was determined by the amount of pNP released from pNPG.

dNumbers in parentheses indicate the relative activity compared with the wild-type enzyme.

Discussion

The limitation encountered in the transglycosylation reaction occurred in concurrence with hydrolysis of the transfer products, which reduced the final product yield. As a trial experiment to obtain BglA mutants, which have been found to improve transglycosylation activity, the site-directed mutagenesis of BglA was carried out based on the results of directed evolution of *Tt*-β-GlY [11]. As expected, the mutant enzymes lowered the hydrolysis activity, but the transglycosylation activity was relatively maintained. The relative activity of the mutants, indicated by the transglycosylation activity over hydrolysis activity, were revealed to be increased compared with that of the wild-type BglA. In a previous study, a few *Tt*-β-GlY mutants succeeded...
to prove that the transglycosylation activity increased over hydrolysis activity by random mutagenesis [11]. The N282T mutant of Tt-β-Gly almost completely eliminated hydrolysis activity, whereas it only decreased the transglycosylation activity by 3- to 5-fold compared with the wild-type enzyme. However, in our experiment, although N291T, which is identical to the N282T mutant of Tt-β-Gly, dramatically reduced hydrolysis activity, the transglycosylation activity did not exceed the hydrolys is activity. Interestingly, we found that most of the mutants lost their activities towards the 1,6 and 1,4 linkages, and exhibited a preference for the 1,3 linkage. The shift of the regioselectivity into the 1,3 linkage is mostly due to the reduction of the 1,6 and 1,4 regioselectivities, and not to major improvement of the 1,3 regioselectivity. The reason for the low transglycosylation activity of most of our mutants compared with those from Tt-β-Gly mutants is not yet clear.

The change of the regioselectivity was also confirmed by using two different acceptors. The major transglycosylation products produced by the enzyme reaction with esculin or salicin (acceptor) and cellobiose (donor) were different between the wild-type and N291T BglA. Although we have not yet identified the transglycosylation products, we can suppose that each product is a regioisomer of β-D-glucosyl esculin and β-D-glucosyl salicin, taking into consideration our previous experience. Otherwise, the production of different transglycosylation products by the mutant may be due to the effect of methanol. The methyl group of methanol will act as an acceptor instead of esculin or salicin. Therefore, the strong spot that appeared in the wild-type enzyme may possibly be a methyl-glucoside. The mutant may affect the transferring ability of the enzyme, thereby resulting in the change of regioselectivity. The effect of positive mutations on transglycosylation activity was confirmed by a molecular modeling study of Tt-β-Gly [11].

The improved transglycosylation activity of N282T was previously explained by a favorable substrate binding docking energy, which is sufficiently significant to allow the changes of transglycosylation activity. In other studies of α-galactosidase (AgaB) from B. stearothermophilus, investigators were able to isolate AgaB mutants, in which one mutation resulted in dramatic changes in regioselectivity [8].

In conclusion, we identified BglA mutants that improved transglycosylation efficiency and altered regioselectivity. The analysis of the transglycosylation products obtained from N291T revealed that the Asn-291 residue is important in the control of transglycosylation. The results of this analysis suggest that directed mutagenesis of the glycosidases could be used for fine-tuning of the enzyme properties. Therefore, regioselective engineering of glycosidases will be useful for the efficient synthesis of regiospecific glycosides. Experiments are currently being conducted to broaden the acceptor specificity so that this enzyme can be used in various synthesis reactions in the future.

Acknowledgments

This study was supported by the Marine and Extreme Genome Research Center Program, Ministry of Marine...
Affairs and Fisheries, Republic of Korea. Dr. S.-Y. Jun and K.-M. Park were partly supported by the Brain Korea 21 program of the Korean Ministry of Education (Brain Korea 21 Program).

REFERENCES

