In Vitro Bactericidal and Anticancer Activity of New Metabolite, ARK42, Isolated from Aspergillus repens K42

PARK, JE WON, BEOM SEOK SONG, DOJIN RYU, CHAN LEE, AND YOUNG BAE KIM

Received: October 9, 2002
Accepted: November 29, 2002

Abstract A novel antibacterial metabolite, ARK42, was isolated from a xerophilic fungal strain K42, and identified as Aspergillus repens based on its morphological characteristics. The metabolite exhibited antibacterial activities towards Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa, with MICs of 25, 12.5, and 3.125 µg/ml, respectively, and killed Pseudomonas aeruginosa with minimal bactericidal concentration (MBC) of 12.5 µg/ml. Furthermore, anticancer activities were demonstrated against human colon cancer DLD-1 and lung cancer LXFL529 cells with an IC50 of 10 and 1 µg/ml, respectively.

Key words: Aspergillus repens, bactericidal activity, anticancer activity

The Aspergillus glaucus group (Anamorph, Eurotium Link: Fr) is generally prevalent in the mycoflora found in stored grains, because of its ability to grow at minimum moisture levels [13]. Some of these xerophiles, for example, A. chevalieri and A. amsterlodami, are considered to be mycotoxigenic [8], while other representatives, including A. repens, produce metabolites, such as anthraquinones and alkaloids [4, 22]. These metabolites are known to exhibit a variety of biological effects, such as inhibition of bacterial and fungal growth, mutagenicity, hepatotoxicity, and toxicity in cockerels and rabbits [1, 2, 3, 5, 6, 17, 28, 29], and they have recently attracted worldwide interest as antitumor therapeutics [7, 13, 27, 30]. It has been suggested that the fungal anthraquinones and alkaloids may be responsible for such potent biological activities, and furthermore, none of the biologically active metabolites from the Aspergillus glaucus group have been found to be extractable, except by using organic solvents such as chloroform, dichloromethane, and ethyl acetate [2, 5, 22, 29, 30]. According to Bachmann et al. [5], all the fungal anthraquinone derivatives can be extracted with dichloromethane and chloroform. In addition, the alkaloid echinulin causing feed refusal by swine has been reported to be extractable with acetone and ethyl acetate [29]. Nevertheless, until now, there has been no report dealing with the biological activity of a water-soluble metabolite. In a recent screening by the current authors to discover biologically active metabolites from the xerophiles in stored rice, the fungal strain K42 was found to produce a new water-soluble antibacterial metabolite that was tentatively named ARK42. Accordingly, the current study was undertaken to investigate the taxonomy of the K42 strain, along with the isolation, physicochemical properties, and in vitro antibacterial and anticancer activities of ARK42.

The fungal strain K42 was originally isolated from a rice sample collected in Korea. CZ20S (Czapek agar with 20% sucrose: NaNO3 0.3%, K2HPO4 0.1%, KCl 0.05%, MgSO4·7H2O 0.05%, FeSO4·7H2O 0.001%, sucrose 20%, and agar 1.5%) and YE20S (Yeast extract agar with 20% sucrose: yeast extract 2%, sucrose 20%) media were used to identify strain K42 and for the production of ARK42, respectively [24]. The morphological characteristics of the strain K42 were determined with a culture incubated for two weeks on CZ20S at 25°C under an electron microscope (JEOL 8400 SEM, Peabody, MA, U.S.A.). Spectral and physicochemical data for ARK42 were obtained by the following instruments: UV, Kontron UVIKON 930; IR, Bio-rad FT-IR/RAMAN spectrophotometer; and Elemental analyzer, CE instruments Flash EA 1112 series. The microtiter-based MICs and MBCs (minimal bactericidal concentrations) of ARK42 against test microorganisms were determined using a Labsystems Bioscreen C reader, as recommended by the National Committee for Clinical
The microorganisms tested in the current study were as follows: Gram (+) *Bacillus cereus* KCTC 1012, *B. subtilis* KCTC 1021 [16], *Listeria monocytogenes* ATCC 19118 [15], *Staphylococcus aureus* KCTC 1916 [11]; Gram (-) *Enterobacter cloacae* KCTC 1321B, *Escherichia coli* ATCC 43894 [12], *Klebsiella oxytoca* ATCC 10881, *Pseudomonas aeruginosa* ATCC 9027 [14], *P. aeruginosa* KCCM 11328, and *Salmonella typhimurium* KCTC 1925 [9]. The anticancer activity of ARK42 against human tumor cells was colorimetrically determined at 590 nm according to a sulforhodamine B assay [26]. Human colon cancer cells, DLD-1, and lung cancer cells, LXFL529, were obtained from the Korean Cell Line Bank (KCLB), Seoul, Korea. The concentration required to reduce cell viability by 50% (IC$_{50}$) was used as the index for anticancer activity.

The colonies of the strain K42 on CZ20S spread broadly and irregularly, attaining a diameter of 8 cm in 2 weeks at 25°C, were flat, and characterized by broad zones of light yellow to olive conidial heads. Reverse was colored in dark brown. The conidiophores were 170 to 200 µm in length and 6 µm in width (Fig. 1A). The vesicle produced at the top of the conidiophores was mostly subglobose and 22 to 32 µm in diameter. The conidia were globose, ornamented, and 4 to 6 µm in diameter. The asci were globose to subglobose with 8 spores and 13 µm in diameter. The asci were 3 to 6 µm in diameter, and subglobose with a convex smooth surface, without any equatorial ridges and furrows (Fig. 1B). Therefore, according to the taxonomic criteria of the genus *Aspergillus* established by Raper and Fennell [23], the strain was identified as *A. repens*. The isolation procedure of ARK42 is outlined in Fig. 2. After incubation at 25°C in YE20S as a static culture for 8 weeks, the broth was filtered with Whatman #42 (Whatman® Int. Ltd., England) and titrated to pH 7.

The filtrate was passed through a C18 resin (Waters, Milford, MA, U.S.A.) column to remove the pigments, then washed with ethyl acetate. Next, the aqueous layer was applied to a Toyopearl® DEAE-650C (Supelco Inc., Bellefonte, PA, U.S.A.) resin, and eluted with 0.3 M NaCl. The eluate was then concentrated using an ultrafiltration membrane (MWCO 500, Millipore Co., Bedford, MA, U.S.A). After being freeze-dried, the concentrate was further purified using a preparative silica gel TLC (Kieselgel 60F254, 1
mm thickness, Merck Co. Ltd., Whitehouse Station, NJ, U.S.A.), and the gel was developed with methanol-water (1:1, v/v) to give ARK42 (Rf value=0.16). The TLC bioautography of ARK42 is shown in Fig. 3. The active spot was cut from the silica plate, extracted with water, and finally freeze-dried to give ARK42 as a colorless amorphous powder. The powder was readily soluble in water and DMSO, yet insoluble in ethyl acetate, chloroform, and diethyl ether. Various physicochemical data for ARK42 are summarized in Table 1. UV absorption was exhibited at 214 and 289 nm, and IR absorption at 3,417, 2,931, and 1,653 cm⁻¹, due to phenolic hydroxyl and carbonyl groups, respectively. ARK42 showed antibacterial activities against *Staphylococcus aureus*, *Bacillus cereus*, and *Pseudomonas aeruginosa* with MICs of 25, 12.5, and 3.125 µg/ml, respectively (Table 2). It also showed bactericidal activity against *P. aeruginosa*, with an MBC of 12.5 µg/ml. As shown in Fig. 4, anticancer activities were observed against human colon cancer DLD-1 and lung cancer LXFL529 cells. The IC₅₀ values of ARK42 against DLD-1 and LXFL529 was about 10 and 1 µg/ml.

In summary, we isolated *A. repens* K42 from stored rice. The strain was found to produce a biologically active metabolite, ARK42, which exhibited bactericidal activity against *P. aeruginosa*. Experiments with two human cancer cells also revealed anticancer activities. Based on the fact that ARK42 was adsorbed by a DEAE anion exchanger, it would appear that ARK42 contains carboxyl and/or carbonyl functional groups, which was coincident with its acidic nature in water and the IR spectrum results. Therefore, to the best of our knowledge, this is the first report on the isolation of a water-soluble metabolite, which exhibits bactericidal and anticancer activities, from the *A. glaucus* group. Further studies of ARK42 are currently underway to elucidate its structure using mass spectrometry.

Table 1. Physicochemical data for ARK42 isolated from *A. repens* K42 culture.

Appearance	Colorless amorphous powder
Nature	Acidic
Solubility : soluble insoluble	Water, DMSO Ethyl acetate, chloroform, diethyl ether
TLC, silica gel developed with methanol-water (1:1, v/v)	Rf 0.16
Elements analyzed (%)	C: 22.19, H: 4.18, O: 31.65
UV λₘₚ in water (nm)	214, 289
IR νₘ in cm⁻¹	3,417, 2,931, 1,653

Table 2. *In vitro* antibacterial activity of ARK42 isolated from *A. repens* K42 culture.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>MIC (µg/ml)</th>
<th>MBC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus KCTC 1012</td>
<td>12.5</td>
<td>50</td>
</tr>
<tr>
<td>B. subtilis KCTC 1021</td>
<td>12.5</td>
<td>50</td>
</tr>
<tr>
<td>Listeria monocytogenes ATCC 19118</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Staphylococcus aureus KCTC 1916</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Enterobacter cloacae KCTC 1321B</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>Escherichia coli ATCC 43894</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>Klebsiella oxytoca ATCC 10881</td>
<td>>100</td>
<td>-</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 9027</td>
<td>6.25</td>
<td>12.5</td>
</tr>
<tr>
<td>P. aeruginosa KCCM 11328</td>
<td>3.125</td>
<td>12.5</td>
</tr>
<tr>
<td>Salmonella typhimurium KCTC 1925</td>
<td>>100</td>
<td>-</td>
</tr>
</tbody>
</table>

¹The MIC was defined as the lowest concentration at which there was no sign of growth after 36 h of incubation.
²The MBC was determined by subculturing the broth from each well with no sign of growth after 36 h of incubation and from the control well (no addition of ARK42). The MBC was defined as the lowest concentration yielding CFU<0.1% of the control well.
³Not tested.
(MS) and nuclear magnetic resonance (NMR) spectrometry, and examine other biological activities such as its mutagenicity in the Ames/Salmonella microsome system [25].

Acknowledgment

This research was supported by the Post-doctoral fellowship program of the Brain Korea 21 project in 2002.

REFERENCES

