Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2013 ; 23(9): 1253~1259

AuthorJong-Sub Lee, Eun-Hee Park, Jung-Wan Kim, Soo-Hwan Yeo, Myoung-Dong Kim
AffiliationDepartment of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
TitleGrowth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit
PublicationInfo J. Microbiol. Biotechnol.2013 ; 23(9): 1253~1259
AbstractThe influences of glucose concentration, initial medium acidity (pH), and temperature on the growth and ethanol production of Saccharomyces cerevisiae NK28, which was isolated from kiwi fruit, were examined in shake flask cultures. The optimal glucose concentration, initial medium pH, and temperature for ethanol production were 200 g/l, pH 6.0, and 35oC, respectively. Under this growth condition, S. cerevisiae NK28 produced 98.9 ± 5.67 g/l ethanol in 24 h with a volumetric ethanol production rate of 4.12 ± 0.24 g/l·h. S. cerevisiae NK28 was more tolerant to heat and ethanol than laboratory strain S. cerevisiae BY4742, and its tolerance to ethanol and fermentation inhibitors was comparable to that of an ethanologen, S. cerevisiae D5A.
Full-Text(PDF)
KeywordsSaccharomyces cerevisiae, fermentation, ethanol, tolerance, fermentation inhibitor
References
  1. Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, et al. 2004. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63:537-542.
    Pubmed CrossRef
  2. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, et al. 2010. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 3: 2.
    Pubmed CrossRef
  3. Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82:340-349.
    CrossRef
  4. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568.
    Pubmed CrossRef
  5. Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, et al. 2012. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J. Biosci. Bioeng. 114: 144-149.
    Pubmed CrossRef
  6. Boneau CA. 1960. The effects of violations of assumptions underlying the t test. Psychol. Bull. 57: 49-64.
    Pubmed CrossRef
  7. Borole A P, M ielenz JR, V ish nivetskaya T A, H amilton CY. 2009. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels 2: 7.
    Pubmed CrossRef
  8. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20: 200-206.
    Pubmed CrossRef
  9. Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV. 2009. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour. Technol. 100: 2404-2410.
    Pubmed CrossRef
  10. D’amore T, Stewart GG. 1987. Ethanol tolerance of yeast. Enzyme Microb. Technol. 9: 322-330.
    CrossRef
  11. Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J. 2008. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 1: 3.
    Pubmed CrossRef
  12. Gao R, Yuan X, Li J, Wang X, Cheng X, Zhu W, Cui Z. 2012. Performance and spatial succession of a full-scale anaerobic plant treating high-concentration cassava bioethanol wastewater. J. Microbiol. Biotechnol. 22: 1148-1154.
    Pubmed CrossRef
  13. Gomathi D, Muthulakshmi C, Kumar DG, Ravikumar G, Kalaiselvi M, Uma C. 2012. Production of bio-ethanol from pretreated agricultural byproduct using enzymatic hydrolysis and simultaneous saccharification. Microbiology 81: 201-207.
    CrossRef
  14. Haque M A, Nath Barman D, Kang TH, K im MK, K im J, Kim H, et al. 2012. Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. J. Microbiol. Biotechnol. 22: 1681-1691.
    Pubmed CrossRef
  15. Hawkins GM, Doran-Peterson J. 2011. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol. Biofuels 4: 49.
    Pubmed CrossRef
  16. Heer D, Sauer U. 2008. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb. Biotechnol. 1: 497-506.
    Pubmed CrossRef
  17. Horváth IS, Taherzadeh MJ, Niklasson C, Lidén G. 2001. Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol. Bioeng. 75: 540-549.
    Pubmed CrossRef
  18. Keating JD, Panganiban C, Mansfield SD. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206.
    Pubmed CrossRef
  19. Koppram R, Albers E, Olsson L. 2012. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol. Biofuels 5: 32.
    Pubmed CrossRef
  20. Kumar C, Sharma R, Bachhawat AK. 2003. Investigations into the polymorphisms at the ECM38 locus of two widely used Saccharomyces cerevisiae S288C strains, YPH499 and BY4742. Yeast 20: 857-863.
    Pubmed CrossRef
  21. Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ. 1999. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 77: 91-103.
    CrossRef
  22. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, et al. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159.
    CrossRef
  23. Larsson S, Quintana-Säinz A, Reimann A, Nilvebrant NO, Jönsson LJ. 2000. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 84-86:617-632.
    CrossRef
  24. Lee HJ, Ahn SJ, Seo YJ, Lee JW. 2013. A feasibility study on the multistage process for the oxalic acid pretreatment of a lignocellulosic biomass using electrodialysis. Bioresour. Technol. 130: 211-217.
    Pubmed CrossRef
  25. Lee YJ, Choi YR, Lee SY, Park JT, Shim JH, Park KH, et al. 2011. Screening wild yeast strains for alcohol fermentation from various fruits. Mycobiology 39: 33-39.
    Pubmed CrossRef
  26. Palmqvist E, Grage H, Meinander NQ, Hähn-Hägerdal B. 1999. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 63: 46-55.
    CrossRef
  27. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M. 2011. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. 90:1573-1586.
    Pubmed CrossRef
  28. Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580.
    Pubmed CrossRef
  29. Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM. 2008. Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol. Bioeng. 101: 894-902.
    Pubmed CrossRef
  30. Wahlbom CF, Hähn-Hägerdal B. 2002. Furfural, 5hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 78:172-178.
    Pubmed CrossRef
  31. Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS. 2011. Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol. Bioeng. 108: 2865-2875.
    Pubmed CrossRef
  32. Wu M, Wang M, Liu J, Huo H. 2008. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel. Biotechnol. Prog. 24: 1204-1214.
    Pubmed CrossRef
  33. Yanase H, Miyawaki H, Sakurai M, Kawakami A, Matsumoto M, Haga K, et al. 2012. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 94: 1667-1678.
    Pubmed CrossRef
  34. Zh ang Q, F u Y, W ang Y, H an J , Lv J , Wang S . 2012. Improved ethanol production of a newly isolated thermotolerant Saccharomyces cerevisiae strain after high-energy-pulse-electron beam. J. Appl. Microbiol. 112: 280-288.
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd