Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2013 ; 23(9): 1244~1252

AuthorTonči Rezić, Damir Oros, Iva Marković, Daniel Kracher, Roland Ludwig, Božidar Šantek
AffiliationFaculty of Food Technology and Biotechnology, University of Zagreb University, 10000 Zagreb, Pierottijeva 6, Croatia
TitleIntegrated Hydrolyzation and Fermentation of Sugar Beet Pulp to Bioethanol
PublicationInfo J. Microbiol. Biotechnol.2013 ; 23(9): 1244~1252
AbstractSugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 g/l·h, respectively.
Full-Text(PDF)
KeywordsSugar beet pulp, bioethanol, ultrasound pretreatment, thermal pretreatment, enzymatic hydrolysis, Saccharomyces cerevisiae
References
  1. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861.
    Pubmed CrossRef
  2. Baciu IE, Jördening HJ. 2004. Kinetics of galacturonic acid release from sugar-beet pulp. Enzyme Microb. Technol. 34:505-512.
    CrossRef
  3. Bakker BM, Overkamp KM, Van Maris AJP, Kotter P, Luttik MA, Van Dijken JP, et al. 2001. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25: 15-37.
    Pubmed CrossRef
  4. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. 2007. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol. 108: 67-93.
    Pubmed CrossRef
  5. Chang VS, Holtzapple M. 2000. Fundamental factors affecting biomass reactivity. Appl. Biochem. Biotechnol. 84/86: 5-37.
    CrossRef
  6. Cronwright GR, Rohwer JM, Prior BA. 2002. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68: 4448-4456.
    Pubmed CrossRef
  7. Crowder TM, Rosati JA, Schroeter JD, Hickey AJ, Martonen TB. 2002. Fundamental effects of particle morphology on lung delivery: predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharmaceut. Res. 19: 239-245.
    Pubmed CrossRef
  8. Dickey DS. 2008. Liquid-solid operations and equipment, pp. 6-26. In Genck WJ (ed.). Perry's Chemical Engineers' Handbook, 8th Ed. McGraw-Hill Book Company, New York.
  9. Doran J, Cripe J, Sutton M, Foster B. 2000. Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Appl. Biochem. Biotechnol. 84/86: 141-152.
    CrossRef
  10. Doran J, Foster B. 2000. Ethanol production from sugar beet pulp using engineered bacteria. Int. Sugar J. 108: 177-180.
  11. Ewanick SM, Bura R, Saddler JN. 2007. Acid-catalyzed steam pretreatment of Lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol. Bioeng. 8:737-746.
    Pubmed CrossRef
  12. Foster BL, Dale BE, Doran-Peterson JB. 2001. Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl. Biochem. Biotechnol. 91/93: 269-282.
    CrossRef
  13. Hraste M, Husnjak M. 1995. Suspensioin correlation in the range of critical particle/vessel diameter ratio. Chem. Biochem. Eng. Q. 9: 105-106.
  14. Kim JH, Block DE, Mills DA. 2010. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 88: 1077-1085.
    Pubmed CrossRef
  15. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM. 2009. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem. Eng. J. 46:126-131.
    CrossRef
  16. Kumar R, Wyman CE. 2009. Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour. Technol. 100: 4193–4202.
    Pubmed CrossRef
  17. Kühnel S, Schols HA, Gruppen H. 2011. Aiming for the complete utilization of sugar-beet pulp: examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnol. Biofuels 4: 14.
    Pubmed CrossRef
  18. Micard V, Renard CMGC, Thibault JF. 1996. Enzymatic saccharification of sugar-beet pulp. Enzyme Microb. Technol. 34: 505-512.
  19. Micard V, Renard CMGC, Thibault JF. 1997. Influence of pretreatments on enzymatic degradation of a cellulose-rich residue from sugar-beet pulp. Lebensm. Wiss. Technol. 30:284-291.
    CrossRef
  20. Moosavi-Nasab M, Majdi-Nasab M. 2010. Utilization of sugar beet pulp as a substrate for the fungal production of cellulase and bioethanol. Afr. J. Microbiol. Res. 4: 2556-2561.
  21. Ohgren K, Vehmaanpera J, Siika-aho M, Galbe M, Viikari L, Zacchi G. 2007. High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam-pretreated corn stover for ethanol production. Enzyme Microb. Technol. 40: 607-613.
    CrossRef
  22. Oosterveld A, Beldman G, Voragen AGJ. 2000. Oxidative cross-linking of pectic polysaccharides from sugar beet pulp. Carbohydr. Res. 328: 199-207.
    CrossRef
  23. Palmqvist B, Wiman M, Liden G. 2011. Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption. Biotechnol. Biofuels 4: 10.
    Pubmed CrossRef
  24. Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN. 2005. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl. Biochem. Biotechnol. 121: 1069-1079.
    CrossRef
  25. Sakamoto T, Sakai T. 1995. Analysis of structure of sugarbeet pectin by enzymatic methods. Phytochemistry 39: 821823.
    CrossRef
  26. Spagnuolo M, Crecchio C, Pizzigallo MDR, Ruggiero P. 1999. Fractionation of sugar beet pulp into pectin, cellulose and arabinose by arabinases combined with ultrafiltration. Biotechnol. Bioeng. 64: 685-691.
    CrossRef
  27. Spagnuolo M, Crecchio C, Pizzigallo MDR, Ruggiero P. 1997. Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresour. Technol. 60: 215-222.
    CrossRef
  28. Sutton MD, Peterson JBD. 2001. Fermentation of sugar beet pulp for ethanol production using bioengineered Klebsiella oxytoca strain P2. J. Sugar Beet Res. 38: 19-34.
    CrossRef
  29. Talebnia F, Taherzadeh MJ. 2006. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. J. Biotechnol. 125: 377-384.
    Pubmed CrossRef
  30. Tang Y, An M, Liu K, Nagai S, Shigematsu T, Morimura S, Kida K. 2006. Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Proc. Biochem. 41: 909-914.
    CrossRef
  31. Van Maris AJA, Abbott DA, Bellissimi E, Van den Brink J, Kuyper M, Luttik MAH, et al. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90: 391418.
  32. Yachmenev V, Condon B, Klasson T, Lambert A. 2009. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bioenergy 3: 25-31.
    CrossRef
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd