Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2013 ; 23(7): 913~922

AuthorYoungdeuk Lee, Chulhong Oh, Mahanama De Zoysa, Hyowon Kim, Wickramaarachchige Don Niroshana Wickramaarachchi, Ilson Whang, Do-Hyung Kang, Jehee Lee
AffiliationKorea Institute of Ocean Science Technology, Ansan 426-744, Republic of Korea ,Department of Marine Life Sciences, Jeju National University, 66 Jejudaehakno, Ara-Dong, Jeju 690-756, Republic of Korea
TitleMolecular Cloning, Overexpression, and Enzymatic Characterization of Glycosyl Hydrolase Family 16 β-Agarase from Marine Bacterium Saccharophagus sp. AG21 in Escherichia coli
PublicationInfo J. Microbiol. Biotechnol.2013 ; 23(7): 913~922
AbstractAn agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The β-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) β-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to β-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant β-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at 55oC and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by FeSO4 (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a β-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.
Full-Text(PDF)
KeywordsSaccharophagus sp.AG21, beta-agarase, GH16, neoagaro-oligosaccharide
References
  1. Abou-Hachem M, Nordberg Karlsson E, Bartonek-Roxa E, Raghothama S, Simpson PJ, Gilbert HJ, et al. 2000. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: Cloning, expression and binding studies. Biochem. J. 345: 53-60.
    Pubmed CrossRef
  2. Abou-Hachem M, Karlsson EM, Simpson PJ, Linse S, Sellers P, Williamson MP, et al. 2002. Calcium binding and thermostability of carbohydrate binding module CBM-2 of Xyn10A from Rhodothermus marinus. Biochemistry 41: 57205729.
    CrossRef
  3. Allouch J, Jam M, Helbert W, Barbeyrons T, Kloareg B, Henrissat B, et al. 2003. The three-dimensional structures of two β-agarase. J. Biol. Chem. 278: 47171-47180.
    Pubmed CrossRef
  4. Araki T, Hayakawa M, Zhang L, Karita S, Morishita T. 1998. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Mar. Biotechnol. 6: 260-265.
    Pubmed
  5. Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, et al. 1998. Pseudomonas cellulosebinding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J. 331: 775-781.
    Pubmed
  6. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  7. Charnock SJ, Spurway TD, Xie H, Beylot MH, Virden R, Warren RA, et al. 1998. The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J. Biol. Chem. 273: 32187-32199.
    Pubmed CrossRef
  8. Dong J, Hashikawa S, Konishi T, Tamaru Y, Araki T. 2006. Cloning of the novel gene encoding beta-agarase C from a marine bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl. Environ. Microbiol. 72: 6399-6401.
    Pubmed CrossRef
  9. Dong J, Tamaru Y, Araki T. 2007. A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl. Microbiol. Biotechnol. 74: 1248-1255.
    Pubmed CrossRef
  10. Duckworth M, Yaphe W. 1971. Preparation of agarose by fractionation from the spectrum of polysaccharides in agar. Anal. Biochem. 44: 636-641.
    CrossRef
  11. Duckworth M, Turvey JR. 1969. The action of a bacterial agarase on agarose, porphyran and alkali treated porphyran. Biochem. J. 113: 687-692.
    Pubmed
  12. Ekborg NA, Talyor LE, Longmire AG, Henrissat B, Weiner RM, Hucheson SW. 2006. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl. Environ. Microbiol. 72: 3396-3405.
    Pubmed CrossRef
  13. Fu W, Han B, Duan D, Liu W, Wang C. 2008. Purification and characterization of agarase from a marine bacterium Vibrio sp. F-6. J. Ind. Microbiol. Biotechnol. 35: 915-922.
    Pubmed CrossRef
  14. Fu XT, Lin H, Kim SM. 2008. Purification and characterization of a novel beta-agarase, AgaA34, from Agarivorans albus YKW-34. Appl. Microbiol. Biotechnol. 78: 265–273.
    Pubmed CrossRef
  15. Fu XT, Kim SM. 2010. Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8: 200-218.
    Pubmed CrossRef
  16. Gill J, Rixon JE, Bolam DN, McQueen-Mason S, Simpson PJ, Williamson MP. 1999. The Type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem. J. 342: 473-480.
    Pubmed CrossRef
  17. Gold P. 1992. Use of a novel agarose gel-digesting enzyme for easy and rapid purification of PCR-amplified DNA for sequencing. Biotechniques 13: 132-134.
    Pubmed
  18. Henrissat B, Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696.
    Pubmed
  19. Henshaw J, Bolam DN, Pires VM, Czjzek M, Henrissat B, Ferreira LM, et al. 2004. The family 6 carbohydrate-binding module cmCBM6-2 contains two ligand-binding sites with distinct specificities. J. Biol. Chem. 279: 21552-21559.
    Pubmed CrossRef
  20. Hu Z, Lin BK, Xu Y, Zhong MQ, Liu GM. 2009. Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J. Appl. Microbiol. 106: 181-190.
    Pubmed CrossRef
  21. Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, et al. 2005. The endo-β-agarases AgaA and AgaB from the marine bacterium Zobelli agalactanivorans: Two paralogue enzymes with different molecular organization catalytic behaviours. Biochem. J. 385: 703-713.
    Pubmed CrossRef
  22. Kobayashi R, Takisada M, Suzuki T, Kirimira K, Usami S. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163.
    Pubmed CrossRef
  23. Kim DY, Ham SJ, Lee HJ, Cho HY, Kim JH, Kim YJ, et al. 2012. Cloning and characterization of a modular GH5 beta1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 102: 9185-9192.
    Pubmed CrossRef
  24. Kim HT, Lee S, Lee D, Kim HS, Bang WG, Kim KH, et al. 2010. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: An exo-type beta-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol. 86: 227234.
    Pubmed CrossRef
  25. Kim HT, Lee S, Kim KH, Choi IG. 2012. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour. Technol. 107: 301-306.
    Pubmed CrossRef
  26. Kumagai Y, Kawakami K, Mukaihara T, Kimura M, Hatanaka T. 2012. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie 94: 2783-2790.
    Pubmed CrossRef
  27. Long M, Yu Z, Xu X. 2010. A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar. Biotechnol. 12: 62-69.
    Pubmed CrossRef
  28. Lee DG, Park GT, Kim NY, Lee EJ, Jang MK, Shin YG, et al. 2006. Cloning, expression, and characterization of a glycoside hydrolase family 50 beta-agarase from a marine Agarivorans isolate. Biotechnol. Lett. 28: 1925-1932.
    Pubmed CrossRef
  29. McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP. 2004. Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal. Biochem. 326: 49-54.
    Pubmed CrossRef
  30. Michel G, Barbeyron T, Kloareg B, Czjzek M. 2009. The family 6 carbohydrate-binding modules have coevolved with their appended catalytic modules toward similar substrate specificity. Glycobiology 19: 615-623.
    Pubmed CrossRef
  31. Morrice LM, McLean MW, Williamson FB, Long WF. 1983. Beta-agarase I and II from Pseudoalteromonas atlantica. Purification and some properties. Eur. J. Biochem. 135: 553558.
    CrossRef
  32. Nikapitiya C, Oh C, Lee Y, Lee S, Whang I, Lee J. 2010. Characterization of a glycoside hydrolase family 50 thermostable β-agarase AgrA from marine bacteria Agarivorans sp. Ag17. Fish. Aqua. Sci. 13: 36-48.
  33. Ohta Y, Hatada Y, Nogi Y, Li Z, Ito S, Horikoshi K. 2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 beta agarase from a deep-sea Microbulbifer-like isolate. Appl. Microbiol. Biotechnol. 66: 266-275.
    Pubmed CrossRef
  34. Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, et al. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable beta-agarase from a novel species of deep-sea Microbulbifer. Appl. Microbiol. Biotechnol. 64: 505-514.
    Pubmed CrossRef
  35. Oh C, Nikapitiya C, Lee Y, Whang I, Kang DH, Heo SJ, et al. 2010. Molecular cloning, characterization and enzymatic properties of a novel beta a garase from a marine isolate Pseudoalteromonas sp. AG52. Braz. J. Microbiol. 41: 876-889.
    CrossRef
  36. Oh C, Nikapitiya C, Lee Y, Whang I, Kim SJ, Kang DH, et al. 2010. Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J. Ind. Microbiol. Biotechnol. 37: 483-494.
    Pubmed CrossRef
  37. Santos CR, Paiva JH, Sforca ML, Neves JL, Navarro RZ, Cota J, et al. 2012. Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem. J. 441: 95-104.
    Pubmed CrossRef
  38. Shi YL, Lu XZ, Yu WG. 2008. A new β-agarase from marine bacterium Janthinobacterium sp. SY12. World J. Microb. Biotechnol. 24: 2659-2664.
    CrossRef
  39. Spurway TD, Morland C, Cooper A, Sumner I, Hazlewood GP, O’Donnell AG, et al. 1997. Calcium protects a mesophilic xylanase from proteinase inactivation and thermal unfolding. J. Biol. Chem. 272: 17523-17530.
    Pubmed CrossRef
  40. Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): An endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759.
    Pubmed CrossRef
  41. Temuujin U, Chi WJ, Chang YK, Hong SK. 2012. Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type β-agarase-producing neoagarobiose. J. Bacteriol. 194: 142-149.
    Pubmed CrossRef
  42. Tomme P, Driver DP, Amandoron EA, Miller Jr RC, Antony R, Warren J, et al. 1995. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J. Bacteriol. 177: 4356-4363.
    Pubmed
  43. Wang J, Jiang X, Mou H, Guan H. 2004. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J. Appl. Phycol. 16: 333-340.
    CrossRef
  44. Wang JX, Mou HJ, Jiang XL, Guan HS. 2006. Characterization of a novel β-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71:833-839.
    Pubmed CrossRef
  45. Weinberger F, Richard C, Kloareg B, Kashman Y, Hppe H, Friedlander M. 2001. Structure-activity relationships of oligoagar elicitors towards Gracilaria conferta. J. Phycol. 37: 418-426.
    CrossRef
  46. Young KS, Bhattacharjee SS, Yaphe W. 1978. Enzymic cleavage of the alpha-linkages in agarose, to yield agarooligosaccharides. Carbohydr. Res. 66: 207-211.
    CrossRef
  47. Zhang WW, Sun L. 2007. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825-2831.
    Pubmed CrossRef
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd