Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2013 ; 23(10): 1386~1394

AuthorHyemin Choi, Dong Gun Lee
AffiliationSchool of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
TitleThe Influence of the N-Terminal Region of Antimicrobial Peptide Pleurocidin on Fungal Apoptosis
PublicationInfo J. Microbiol. Biotechnol.2013 ; 23(10): 1386~1394
AbstractIn our previous study, the 25-mer antimicrobial peptide pleurocidin (Ple) had been thought to induce apoptosis in Candida albicans. This study demonstrated that reactive oxygen species (ROS) production was a major cause of Ple-induced apoptosis. Four truncated analogs were synthesized to understand the functional roles in the N- and C-terminal regions of Ple on the apoptosis. Ple, Ple (4-25), Ple (1-22), and Ple (1-19) produced ROS, including hydroxyl radicals, on the order of [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19)], whereas Ple (7-25) did not induce any ROS production. The results suggested that the N-terminal deletion affected the ROS-inducing activities much more than that of the C-terminal deletion, and net hydrophobicity [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19) > Ple (7-25)] was related to ROS generation rather than other primary factors like net charge. Hence, we focused on the N-terminal-truncated peptides, Ple (4-25) and Ple (7-25), and examined other apoptotic features, including mitochondrial membrane depolarization, caspase activation, phosphatidylserine externalization, and DNA and nuclear fragmentation. The results also confirmed the disappearance of apoptotic activity of Ple (7-25) by the truncation of the N-terminal region (1-6) and the specific activity patterns between Ple and analogs. In conclusion, the N-terminal region of Ple played an important role in apoptosis.
Full-Text(PDF)
KeywordsPleurocidin, Reactive oxygen species, Terminal region, Pleuronectes americanus, Antimicrobial peptide
References
  1. Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, François IE, Madeo F, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516.
    Pubmed CrossRef
  2. Bossy-Wetzel E, Newmeyer DD, Green DR. 1998. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVDspecific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17: 37-49.
    Pubmed CrossRef
  3. Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238250.
    Pubmed CrossRef
  4. Cho J, Lee DG. 2011. Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-1879.
    Pubmed CrossRef
  5. Cole AM, Weis P, Diamond G. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272:12008-12013.
    Pubmed CrossRef
  6. Eisenberg T, Büttner S, Kroemer G, Madeo F. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 10111123.
    Pubmed CrossRef
  7. Fehlbaum P, Bulet P, Chernysh S, Briand JP, Roussel JP, Letellier L, et al. 1996. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93: 1221-1225.
    Pubmed CrossRef
  8. Fu X, Wan S, Lyu YL, Liu LF, Qi H. 2008. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 3: e2009.
  9. Hoskin DW, Ramamoorthy A. 2008. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778: 357-375.
    Pubmed CrossRef
  10. Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, et al. 2007. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta 1768: 1400-1405.
    Pubmed CrossRef
  11. Kanthawong S, Bolscher JG, Veerman EC, van Marle J, Nazmi K, Wongratanacheewin S, et al. 2010. Antimicrobial activities of LL-37 and its truncated variants against Burkholderia thailandensis. Int. J. Antimicrob. Agents 36: 447452.
    Pubmed CrossRef
  12. Lee J, Hwang JS, Hwang IS, Cho J, Lee E, Kim Y, et al. 2012. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic. Biol. Med. 52: 2302-2311.
    Pubmed CrossRef
  13. Li M, Wu RS, Tsai JS. 2003. DAPI derivative: a fluorescent DNA dye that can be covalently attached to biomolecules. Bioorg. Med. Chem. Lett. 13: 4351-4354.
    Pubmed CrossRef
  14. Madeo F, Fröhlich E, Fröhlich KU. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734.
    Pubmed CrossRef
  15. Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, et al. 2002. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9: 911-917.
    CrossRef
  16. Merrifield B. 1986. Solid phase synthesis. Science 232: 341347.
    CrossRef
  17. Miao H, Zhao L, Li C, Shang Q, Lu H, Fu Z, et al. 2012. Inhibitory effect of Shikonin on Candida albicans growth. Biol. Pharm. Bull. 35: 1956-1963.
    Pubmed CrossRef
  18. Morton CO, Dos Santos SC, Coote P. 2007. An amphibianderived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol. Microbiol. 65: 494-507.
    Pubmed CrossRef
  19. Park Y, Lee DG, Kim HN, Kim HK, Woo ER, Choi CH, et al. 2005. Importance of the length of the N- and C-terminal regions of Helicobacter pylori ribosomal protein L1 (RPL1) on its antimicrobial activity. Biotechnol. Lett. 24: 1209-1215.
    CrossRef
  20. Pereira C, Silva RD, Saraiva L, Johansson B, Sousa MJ, Côrte-Real M. 2008. Mitochondria-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1286-1302.
    Pubmed CrossRef
  21. Peters BM, Shirtliff ME, Jabra-Rizk MA. 2010. Antimicrobial peptides: primeval molecules or future drugs? PLOS Pathog. 6: e1001067.
    Pubmed CrossRef
  22. Phillips AJ, Sudbery I, Ramsdale M. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332.
    Pubmed CrossRef
  23. Ranganathan S, Harmison GG, Meyertholen K, Pennuto M, Burnett BG, Fischbeck KH. 2009. Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 18:27-42.
    Pubmed CrossRef
  24. Rollet-Labelle E, Grange MJ, Elbim C, Marquetty C, Gougerot-Pocidalo MA, Pasquier C. 1998. Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radic. Biol. Med. 24: 563-572.
    CrossRef
  25. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278: 3170-3175.
    Pubmed CrossRef
  26. Sheppard R. 2003. The fluorenylmethoxycarbonyl group in solid phase synthesis. J. Pept. Sci. 9: 545-552.
    Pubmed CrossRef
  27. Wadskog I, Maldener C, Proksch A, Madeo F, Adler L. 2004. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol. Biol. Cell 15:1436-1444.
    Pubmed CrossRef
  28. Yao G, Ling L, Luan J, Ye D, Zhu P. 2007. Nonylphenol induces apoptosis of Jurkat cells by a caspase-8 dependent mechanism. Int. Immunopharmacol. 7: 444-453.
    Pubmed CrossRef
  29. Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55.
    Pubmed CrossRef
  30. Zhang L, Rozek A, Hancock RE. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714–35722.
    Pubmed CrossRef
  31. Zunino SJ, Ducore JM, Storms DH. 2007. Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells. Cancer Lett. 254:119-127.
    Pubmed CrossRef
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd