Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2012 ; 22(7): 930~938

AuthorHongchen Zheng, Yihan Liu, Xiaoguang Liu, Jianling Wang, Ying Han, Fuping Lu
AffiliationKey Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, 300457 Tianjin, China,College of Biotechnology, Tianjin University of Science and Technology, 300457 Tianjin, China
TitleIsolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1
PublicationInfo J. Microbiol. Biotechnol.2012 ; 22(7): 930~938
AbstractHigh levels of xylanase activity (143.98 IU/ml) produced by the newly isolated Paenibacillus campinasensis G1-1 were detected when it was cultivated in a synthetic medium. A thermostable xylanase, designated XynG1-1, from P. campinasensis G1-1 was purified to homogeneity by Octyl-Sepharose hydrophobic-interaction chromatography, Sephadex G75 gel-filter chromatography, and Q-Sepharose ion-exchange chromatography, consecutively. By multistep purification, the specific activity of XynG1-1 was up to 1,865.5 IU/mg with a 9.1-fold purification. The molecular mass of purified XynG1-1 was about 41.3 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sequence analysis revealed that XynG1-1 containing 377 amino acids encoded by 1,134 bp genomic sequences of P. campinasensis G1-1 shared 96% homology with XylX from Paenibacillus campinasensis BL11 and 77%~78% homology with xylanases from Bacillus sp. YA- 335 and Bacillus sp. 41M-1, respectively. The activity of XynG1-1 was stimulated by Ca2+, Ba2+, DTT, and β- mercaptoethanol, but was inhibited by Ni2+, Fe2+, Fe3+, Zn2+, SDS, and EDTA. The purified XynG1-1 displayed a greater affinity for birchwood xylan, with an optimal temperature of 60oC and an optimal pH of 7.5. The fact that XynG1-1 is cellulose-free, thermostable (stability at high temperature of 70oC~80oC), and active over a wide pH range (pH 5.0~9.0) suggests that the enzyme is potentially valuable for various industrial applications, especially for pulp bleaching pretreatment.
Full-Text(PDF)
KeywordsPaenibacillus campinasensis, Thermostable Xylanase, Isolation, Purification, Characterization
References
  1. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Laboratory testing of method for assay of xylanase activity. J. Biotechnol. 23: 257-270.
    CrossRef
  2. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338.
    Pubmed CrossRef
  3. Berg, B., B. V. Hofsten, and G. Pettersson. 1972. Growth and cellulose formation by Cellvibrio fulvus. J. Appl. Bacteriol. 35:201-214.
    CrossRef
  4. Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  5. Claus, D. and R. C. W. Berkeley. 1986. Genus Bacillus Cohn 1872, 174AL, pp. 1105-1139. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.). Bergey’s Manual of Systematic Bacteriology, Vol. 2. Williams and Wilkins, Baltimore, USA.
  6. Collins, T., C. Gerday, and G. Feller. 2005. Xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.
    Pubmed CrossRef
  7. Jia, Ouyang, Shen Wang, Yan Wang, Xin Li, Mu Chen, Qiang Yong, and Shiyuan Yu. 2011. Production of a Trichoderma reesei QM9414 xylanase in Pichia pastoris and its application in biobleaching of wheat straw pulp. World J. Microbiol. Biotechnol. 27: 751-758.
    CrossRef
  8. Kim, J. M., H. K. Park, D. Y. Yum, B. K. Hahm, D. H. Bai, and J. H. Yu. 1994. Nucleotide sequence of the pectate lyase gene from alkali-tolerant Bacillus sp. YA-14. Biosci. Biotechnol. Biochem. 58: 947-949.
    Pubmed CrossRef
  9. Knob, A. and E. C. Carmona. 2009. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: A novel acidophilic xylanase. Appl. Biochem. Biotechnol. 162:429-443.
    Pubmed CrossRef
  10. Ko, C. H., W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu, and J. Tu. 2007. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98: 2727-2733.
    Pubmed CrossRef
  11. Ko, C.-H., C.-H. Tsaia, J. Tu, H.-Y. Lee, L.-T. Kua, P.-A. Kuod, and Y.-K. Lai. 2010. Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis BL11. Process Biochem. 45: 1638-1644.
    CrossRef
  12. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227: 680-685.
    Pubmed CrossRef
  13. Maalej, Ines, Ines Belhaj, Najla Fourati Masmoudi, and Hafedh Belghith. 2009. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: Purification and characterization. Appl. Biochem. Biotechnol. 158: 200-212.
    Pubmed CrossRef
  14. Menon, Gopalakrishnan, Kalpana Mody, Jitendra Keshri, and Bhavanath Jha. 2010. Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus Strain, GESF-1. Biotechnol. Bioprocess Eng. 15: 998-1005.
    CrossRef
  15. Morag, E., E. A. Bayer, and R. Lamed. 1990. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172:6098-6105.
    Pubmed Pubmed Central
  16. Nakamura, S., R. Nakai, K. Namba, T. Kubo, K. Wakabayashi, R. Aono, and K. Horikoshi. 1995. Structure-function relationship of the xylanase from alkaliphilic Bacillus sp. strain 41M-1. Nucleic Acids Symp. 34: 99-100.
  17. Pason, Patthra, Akihiko Kosugi, Rattiya Waeonukul, Chakrit Tachaapaikoon, Khanok Ratanakhanokchai, Takamitsu Arai, Yoshinori Murata, Jun Nakajima, and Yutaka Mori. 2010. Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Appl. Microbiol. Biotechnol. 85: 573-580.
    Pubmed CrossRef
  18. Polizeli, M. L., A. C. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67:577-591.
    Pubmed CrossRef
  19. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 3nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  20. Shin, K., M. Jeya, J. K. Lee, and Y. S. Kim. 2010. Purification and characterization of a thermostable xylanase from Fomitopsis pinicola. J. Microbiol. Biotechnol. 20: 1415-1423.
    Pubmed CrossRef
  21. Soren, Dhananjay, Mohanlal Jana, Subhabrata Sengupta, and Anil K. Ghosh. 2009. Purification and characterization of a low molecular weight endo-xylanase from mushroom Termitomyces clypeatus. Appl. Biochem. Biotechnol. 162: 373-389.
    Pubmed CrossRef
  22. Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7.
    Pubmed CrossRef
  23. Suzuki, M. T. and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630.
    Pubmed Pubmed Central
  24. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
    Pubmed CrossRef
  25. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki. 2003. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340.
    CrossRef
  26. Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Meth. Enzymol. 160: 59-74.
    CrossRef
  27. Zhao, Y., K. Meng, H. Luo, P. Yang, P. Shi, H. Huang, Y. Bai, and B. Yao. 2011. Cloning, expression, and characterization of a new xylanase from alkalophilic Paenibacillus sp. 12-11. J. Microbiol. Biotechnol. 21: 861-868.
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd