Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2012 ; 22(5): 659~667

AuthorMingshou Lu, Soojin Lee, Borim Kim, Changhun Park, Minkyu Oh, Kyungmoon Park, Sang Yup Lee, Jinwon Lee
AffiliationDepartment of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea
TitleIdentification of Factors Regulating Escherichia coli 2,3-Butanediol Production by Continuous Culture and Metabolic Flux Analysis
PublicationInfo J. Microbiol. Biotechnol.2012 ; 22(5): 659~667
Abstract2,3-Butanediol (2,3-BDO) is an organic compound with a wide range of industrial applications. Although Escherichia coli is often used for the production of organic compounds, the wild-type E. coli does not contain two essential genes in the 2,3-BDO biosynthesis pathway, and cannot ferment 2,3-BDO. Therefore, a 2,3-BDO biosynthesis mutant strain of Escherichia coli was constructed and cultured. To determine the optimum culture factors for 2,3-BDO production, experiments were conducted under different culture environments ranging from strongly acidic to neutral pH. The extracellular metabolite profiles were obtained using high-performance liquid chromatography (HPLC), and the intracellular metabolite profiles were analyzed by ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC/ Q-TOF-MS). Metabolic flux analysis (MFA) was used to integrate these profiles. The metabolite profiles showed that 2,3-BDO production favors an acidic environment (pH 5), whereas cell mass favors a neutral environment. Furthermore, when the pH of the culture fell below 5, both the cell growth and 2,3-BDO production were inhibited.
Keywords2,3-butanediol fermentation, continuous culture, pH influence, metabolic flux analysis, intracellular metabolic measurements
  1. Biebl, H., A. P. Zeng, K. Menzel, and W. D. Deckwer. 1998. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumonia. Appl. Microbiol. Biotechnol. 50: 24-29.
    Pubmed CrossRef
  2. Bonarius, H. P., V. Hatzimanikatis, K. P. Meesters, C. D. de Gooijer, G. Schmid, and J. Tramper. 1995. Metabolic flux analysis of hybridoma cells in different culture media using mass balance. Biotechnol. Bioeng. 50: 299-318.
  3. Bryn, K., J. C. Ulstrup, and F. C. Størmer. 1973. Effect of acetate upon the formation of acetoin in Klebsiella and Enterobacter and its possible practical application in a rapid VogesProskauer test. Appl. Microbiol. 25: 511-512.
    Pubmed Pubmed Central
  4. Celiñska, E. and W. Grajek. 2009. Biotechnological production of 2,3-butanediol - Current state and prospects. Biotechnol. Adv. 20: 715-725.
  5. Emerson, R. R., M. C. Flickinger, and G. T. Tsao. 1982. Kinetics of dehydration of aqueous 2,3-butanediol to methyl ethyl ketone. Ind. Eng. Chem. Prod. Res. Dev. 21: 473-477.
  6. Ji, X. J., H. Huang, and P. K. Ouyang. 2011. Microbial 2,3butanediol production: A state-of-the-art review. Biotechnol. Adv. 29: 351-364.
    Pubmed CrossRef
  7. Jørgensen, H., J. Nielsen, J. Villadsen, and H. Møllgaard. 1995. Metabolic flux distribution in Penicillium chrysogenum during fed-batch cultivations. Biotechnol. Bioeng. 46: 117-131.
    Pubmed CrossRef
  8. Maddox, I. S. 2008. Microbial production of 2,3-butanediol. pp. 269-291. In H. J. Rehm and G. Reed (eds.). Biotechnology Set, 2nd Ed. Wiley, New York.
  9. Nielsen, D. R., S. H. Yoon, C. J. Yuan, and K. L. Prather. 2010. Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in Escherichia coli. Biotechnol. J. 5: 274-284.
    Pubmed CrossRef
  10. Nissen, T. L., U. Schulze, J. Nielsen, and J. Villadsen. 1997. Flux distribution in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143: 203-218.
    Pubmed CrossRef
  11. Ohashi, Y., A. Hirayama, T. Ishikawa, S. Nakamura, K. Shimizu, Y. Ueno, et al. 2008. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol. Biosyst. 4: 135-147.
    Pubmed CrossRef
  12. Ragauskas, A. J., C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489.
    Pubmed CrossRef
  13. Stephanopoulos, G. N., A. A. Aristido, and J. Nielsen. 1998. Metabolic Engineering, Principles and Methodologies. Academic Press, San Diego.
  14. Van Houdt, R., A. Aertsen, and C. W. Michiels. 2007. Quorumsensingdependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res. Microbiol. 158: 379-385.
    Pubmed CrossRef
  15. Winer, C. L., W. B. Dunn, S. Schuler, D. Broadhurst, R. Jarvis, G. M. Stephens, and R. Goodacre. 2008. Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites. Anal. Chem. 80: 2939-2948.
    Pubmed CrossRef
  16. Xiu, Z. L. and A. P. Zeng. 2008. Present state and perspective of downstream processing of biologically produced 1,3propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926.
    Pubmed CrossRef
  17. Yim, H., R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, et al. 2011. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chem. Biol. dio:10.1038/NCHEMBIO.580.
  18. Zeng, A. P., H. Biebl, and W. D. Deckwer. 1990. Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl. Microbiol. Biotechnol. 33: 485-489.
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by, Ltd