Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2012 ; 22(11): 1501~1509

AuthorBalachandrababu Malini Asha, Masilamani Revathi, Amit Yadav, Natarajan Sakthivel
AffiliationDepartment of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
TitlePurification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus barcinonensis
PublicationInfo J. Microbiol. Biotechnol.2012 ; 22(11): 1501~1509
AbstractA novel bacterial strain, MG7, with high cellulase activity was isolated and identified by morphological characteristics and molecular phylogeny analysis as Paenibacillus barcinonensis. Maximum production of cellulase by MG7 was observed at pH 7.0 and 35oC. The enzyme was purified with a specific activity of 16.88 U/mg, the cellulase activity was observed in a zymogram, and its molecular mass (58.6 kDa) was confirmed by SDS-PAGE. The purified enzyme showed maximum activity at pH 6.0 and 65oC and degraded cellulosic substrates such as carboxy methyl cellulose (CMC), Avicel, filter paper, and β-glucan. The enzyme showed stability with 0.5% concentration of various surfactants. The Km and Vmax of cellulase for CMC and Avicel were found to be 0.459mg/ml and 10.46mg/ml/h, and 1.01 mg/ml and 10.0 mg/ml/h, respectively. The high catalytic activity and its stability to temperature, pH, surfactants, and metal ions indicated that the cellulase enzyme by MG7 is a good candidate for biotechnological applications.
Full-Text(PDF)
KeywordsCellulase, Paenibacillus, Kinetics, Avicelase, Specific activity
References
  1. Adsul, M. G., K. B. Bastawde, A. J. Varma, and D. V. Gokhale. 2007. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulose production. Bioresour. Technol. 98:1467-1473.
    Pubmed CrossRef
  2. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253-260.
    Pubmed CrossRef
  3. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270.
    CrossRef
  4. Castanon, M. and C. R. Wilke. 1981. Effects of the surfactant Tween 80 on enzymatic hydrolysis of newspaper. Biotechnol. Bioeng. 23: 1365-1372.
    CrossRef
  5. Choudhary, N., P. P. Gray, and N. W. Dunn. 1980. Reducing sugar accumulation from alkali pretreated sugar cane bagasse using Cellulomonas. Eur. J. Appl. Microbiol. 11: 50-54.
    CrossRef
  6. Deka, D., P. Bhargavi, A. Sharma, D. Goyal, M. Jawed, and A. Goyal. 2011. Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrate. Enz. Res. 2011: 151656
    Pubmed CrossRef Pubmed Central
  7. Eckert, K. and E. Schneider. 2003. A thermoacidophilic endoglucanase(CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur. J. Biochem. 270: 35933602.
    Pubmed CrossRef
  8. Fan, L. T., Y. Lee, and M. Z. Gharpura. 1982. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv. Biochem. Eng. 23: 157-187.
  9. Fujimoto, N., T. Kosaka, T. Nakao, and M. Yamada. 2011. Bacillus licheniformis bearing a high cellulose-degrading activity, which was isolated as a heat-resistant and micro-aerophilic microorganism from bovine rumen. Open Biotechnol. J. 5: 7-13.
    CrossRef
  10. Fukumori, F., T. Kudo, and K. Korikoshi. 1985. Purification and properties of a cellulase from alkalophilic Bacillus sp. No. 1139. J. Gen. Microbiol. 131: 3339-3345.
  11. Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller, and R. A. Warren. 1991. Domains in microbial beta-1,4-glycanases:Sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303-315.
    Pubmed Pubmed Central
  12. Hakamada, Y., K. Koike, T. Yoshimatsu, H. Mori, T. Kobayashio, and S. Ito. 1997. Thermostable alkaline cellulase from an alkalophilic isolate, Bacillus sp. KSM-S237. Extremophiles 1:151-156.
    Pubmed CrossRef
  13. Han, S. J., Y. J. Yoo, and H. S. Kang. 1995. Characterization of bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo and endoglucanase activity. J. Biol. Chem. 270: 26012-26019.
    Pubmed
  14. Hong, J., H. Tamaki, and S. Akiba. 2001. Cloning of a gene encoding a highly stable endo β1,4-glucanase from Aspergillus niger and its expression in yeast. J. Biosci. Bioeng. 92: 434441.
    Pubmed
  15. Humprey, A. E., A. Moreira, W. Armiger, and D. Zabriskie. 1977. Production of single cell protein from cellulose waste. Biotechnol. Biochem. Symp. 7: 45-64.
  16. Ibrahim, A. S. S. and A. I. El-diwany. 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust. J. Basic Appl. Sci. 4: 473-478.
  17. Il, K. T., J. D. Han, B. S. Jeon, C. B. Yang, K. N. Kim, and M. K. Kim. 2000. Isolation from cattle manure and characterization of Bacillus licheniformis NLR1-X33 secreting cellulase. Asian Aust. J. Anim. Sci. 13: 427-431.
  18. Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus:Enzymatic properties, genetics, and application to detergents. Extremophiles 1: 61-66.
    Pubmed CrossRef
  19. Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada. 1998. Alkaline detergent enzymes from alkaliphiles:Enzymatic properties, genetics, and structures. Extremophiles 2:185-190.
    Pubmed CrossRef
  20. Kang, H. J., K. Uegaki, and H. Fukada. 2007. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshi. Extremophiles 11: 251-256.
    Pubmed CrossRef
  21. Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44: 411-416.
    CrossRef
  22. Kim, C. H. 1995. Characterization and substrate specificity of an endo-β-1,4-D-glucanase I (avicelase) from an extracellular multienzyme complex of Bacillus circulans. Appl. Environ. Microbiol. 61: 959-965.
    Pubmed Pubmed Central
  23. Kim, J. Y., S. H. Hur, and J. H. Hong. 2005. Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol. Lett. 27: 313316.
    Pubmed CrossRef
  24. Kotchoni, S. O., E. W. Gachomo, B. O. Omafuvbe, and O. O. Shonukan. 2006. Purification and biochemical characterization of carboxymethyl cellulase (CMCase) from a catabolite repression insensitive mutant of Bacillus pumilus. Int. J. Agric. Biol. 8:286-292.
  25. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
    Pubmed CrossRef
  26. Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386.
    Pubmed CrossRef
  27. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constant. J. Am. Chem. Soc. 56: 658-666.
    CrossRef
  28. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193: 265-275.
    Pubmed
  29. Mandel, M. 1975. Microbial sources of cellulases. Biotechnol. Bioenerg. Symp. 5: 81-105.
  30. Mawadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83: 177-181.
    CrossRef
  31. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  32. Morissey, J. H. 1981. Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117: 307-310.
    CrossRef
  33. Ogawa, A., A. Suzumatsu, S. Takizawa, H. Kubota, K. Sawada, Y. Hakamada, et al. 2007. Endoglucanase from Paenibacillus spp. from a new clan in glycoside hydrolase family 5. J. Biotechnol. 129: 406-414.
    Pubmed CrossRef
  34. Ozaki, K. and S. Ito. 1991. Purification and properties of an acid endo-1,4-glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 137: 41-48.
    Pubmed CrossRef
  35. Robson, L. M. and G. H. Chambliss. 1984. Characterization of the cellulolytic activity of a Bacillus isolate. Appl. Environ. Microbiol. 47: 1039.
    Pubmed Pubmed Central
  36. Saxena, S., J. Bahadur, and A. Varma. 1991. Production and localisation of carboxymethylcellulase, xylanase and β-glucosidase from Cellulomonas and Micrococcus spp. Appl. Microbiol. Biotechnol. 34: 668-670.
    CrossRef
  37. Seneath, P. H. A., N. S. Mair, E. M. Sharpe, and J. G. Holt. 1986. Bergey’s Manual of Systematic Bacteriology, 9 Ed. Williams and Wilkins, Baltimore,
  38. Shankar, I. T. and L. Isaiarasu. 2011. Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle East J. Sci. Res. 8: 40-45.
  39. Sunishkumar, R., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, Om Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98:145-154.
    Pubmed CrossRef
  40. Veiga, M., A. Esparis, and J. Fabregas. 1983. Isolation of cellulolytic actinomycetes from marine sediments. Appl. Environ. Microbiol. 47: 219-211.
  41. Wang, C. M., C. L. Shyu, S. P. Ho, and S. H. Chiou. 2008. Characterization of a novel thermophilic, cellulose degrading bacterium Paenibacillus sp. strain B39. Lett. Appl. Microbiol. 47: 46-53.
    Pubmed CrossRef
  42. Weisburg, W. G., D. A. Barns Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
    Pubmed Pubmed Central
  43. Wood, P. J. 1980. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res. 85: 271-287.
    CrossRef
  44. Wu, J. and L. K. Ju. 1998. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 14:649-652.
    Pubmed CrossRef
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd