Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2012 ; 22(1): 58~68

AuthorHan-Seung Joo, Jang Won Choi
AffiliationC & J Biotech. Jinju Bio21 Center, Jinju, Gyeongnam 660-844, Korea
TitlePurification and Characterization of a Novel Alkaline Protease from Bacillus horikoshii
PublicationInfo J. Microbiol. Biotechnol.2012 ; 22(1): 58~68
AbstractAn investigation was conducted on the enhancement of production and purification of an oxidant and SDS-stable alkaline protease (BHAP) secreted by an alkalophilic Bacillus horikoshii, which was screened from the body fluid of a unique Korean polychaeta (Periserrula leucophryna) living in the tidal mud flats of Kwangwha Island in the Korean West Sea. A prominent effect on BHAP production was obtained by adding 2% maltose, 1% sodium citrate, 0.8% NaCl, and 0.6% sodium carbonate to the culturing medium. The optimal medium for BHAP production contained (g/l) SBM, 15; casein, 10; K2HPO4, 2; KH2PO4, 2; maltose, 20; sodium citrate, 10; MgSO4, 0.06; NaCl, 8; and Na2CO3, 6. A protease yield of approximately 56,000 U/ml was achieved using the optimized medium, which is an increase of approximately 5.5-fold compared with the previous optimization (10,050 U/ml). The BHAP was homogenously purified 34-fold with an overall recovery of 34% and a specific activity of 223,090 U/mg protein using adsorption with Diaion HPA75, hydrophobic interaction chromatography (HIC) on Phenyl-Sepharose, and ion-exchange chromatography on a DEAE- and CMSepharose column. The purified BHAP was determined a homogeneous by SDS-PAGE, with an apparent molecular mass of 28 kDa, and it showed extreme stability towards organic solvents, SDS, and oxidizing agents. The Km and kcat values were 78.7 μM and 217.4 s-1 for N-succinyl-Ala- Ala-Pro-Phe-pNA at 37oC and pH 9, respectively. The inhibition profile exhibited by PMSF suggested that the protease from B. horikoshii belongs to the family of serine proteases. The BHAP, which showed high stability against SDS and H2O2, has significance for industrial application, such as additives in detergent and feed industries.
Full-Text(PDF)
KeywordsAlkaline protease, B. horikoshii, polychaeta, purification, SDS-stable
References
1. Amoozegar, M. A., A. Z. Fatemi, H. R. Karbalaei-Heidari, and M. R. Razavi. 2007. Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF- 2004 Microbiol. Res. Microbiol. 162: 369-377
  

2. Banerjee, U. C., R. K. Sani, W. Azmi, and R. Soni. 1999 Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. 35: 213-219
 

3. Beg, Q. K. and R. Gupta. 2003 Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb. Technol. Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb. 32: 294-304
 

4. Bradford, M. M. 1976 A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. 72: 248-254
 

5. Bryan, P. N. 2000 Protein engineering of subtilisin. Biochim. Biophys. Acta 1543: 203-222.  : -
 

6. Chu, W.H. 2007 Optimization of extracellular alkaline protease production from species of Bacillus. J. Ind. Microbiol. Biotechnol. Optimization of extracellular alkaline protease production from species of Bacillus. J. Ind. Microbiol. 34: 241-245
  

7. Estell, D. D., T. P. Graycar, and J. A. Wells. 1985 Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. 260: 6518-6521
 

8. Fang, Y. Y., W. B. Yang, S. L. Ong, J. Y. Hu, and W. J. Ng. 2001 Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilus strain. Appl. Microbiol. Biotechnol. Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilus strain. Appl. Microbiol. 57: 153-160
 

9. Gattinger, L. D., Z. Duvnjak, and A. W. Khan. 1990 The use of canola meal as a substrate for xylanase production by Trichoderma reesei. Appl. Microbiol. Biotechnol. The use of canola meal as a substrate for xylanase production by Trichoderma reesei. Appl. Microbiol. 33: 21-25
 

10. Gencka, H. and C. Tari. 2006 Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb. Technol. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb. 39: 703-710
 

11. Gessesse, A. 1997 The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresour. Technol. The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bio 62: 59-61
 

12. Gupta, R., K. Gupta, R. K. Saxena, and S. Khan. 1999 Bleachstable alkaline protease from Bacillus sp. Biotechnol. Lett. Bleachstable alkaline protease from Bacillus sp. Biotechnol. 21: 135-138
 

13. Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan. 2002 An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. 60: 381-395
  

14. Hmidet, N., N. E. Ali, A. Haddar, S. Kanoun, S. K. Alya, and M. Nasri. 2009 Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochem. Eng. J. Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Bioch 47: 71-79
 

15. Horikoshi, K. 1971 Production of alkaline enzymes by alkalophilic microorganisms. I. Alkaline protease produced by Bacillus no. 221. Agric. Biol. Chem. Production of alkaline enzymes by alkalophilic microorganisms. I. Alkaline protease produced by Bacillus no. 221. Agric. Biol. 35: 1407-1414
 

16. Horikoshii, K. 1999 Alkalophiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. Alkalophiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. 63: 735-750
  

17. Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada. 1998 Alkaline detergent enzymes from alkaliphiles: Enzymatic properties, genetics, and structures. Extremophiles 2: 185-190.  : -
  

18. Jacobs, M. F. 1995 Expression of the subtilisin Carlsbergencoding gene in Bacillus licheniformis and Bacillus subtilis. Gene 152: 67-74.  : -
 

19. Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar. 2008 Biochemical and molecular characterization of a detergentstable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90: 1291-1305.  : -
  

20. Jaouadi, B., N. Aghajari, R. Haser, and S. Bejar. 2010 Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92: 360-369.  : -
  

21. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2002 Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. 38: 155-159
 

22. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2003 Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. J. Appl. Microbiol. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. J. Appl. 95: 267-272
  

23. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2004 Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem. Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. 39: 1441-1447
 

24. Joo, H. S. and C. S. Chang. 2005 Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: Optimization and some properties. Process Biochem. Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: Optimization and some properties. 40: 1263-1270
 

25. Joshi, R. H., M. S. Dodia, and S. P. Singh. 2008 Production and optimization of a commercially viable alkaline protease from a haloalkaliphilic bacterium. Biotechnol. Bioprocess Eng. Production and optimization of a commercially viable alkaline protease from a haloalkaliphilic bacterium. Biotechnol. 13: 552-559
 

26. Kaur, S., R. M. Vohra, M. Kapoor, Q. K. Beg, and G. S. Hoondal. 2001 Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microbiol. Biotechnol. Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microbiol. 17: 125-129
 

27. Klingeberg, M., B. Galunsky, C. Sjoholm, V. Kasche, and G. Antranikian. 1995 Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecic proteinase from the extremely thermophilic archaeon Thermococcus stetteri. Appl. Environ. Microbiol. Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecic proteinase from the extremely thermophilic archaeon Ther 61: 3098-3104
  

28. Kobayashi, T., Y. Hakamada, S. Adachi, J. Hitomi, T. Yoshimatsu, K. Koike, S. Kawai, and S. Ito. 1995 Purification and properties of an alkaline protease form alkalophilic Bacillus sp. KSM-16. Appl. Microbiol. Biotechnol. Purification and properties of an alkaline protease form alkalophilic Bacillus sp. KSM-16. Appl. Microbiol. 43: 473-481
  

29. Koo, K. B., H. S. Joo, and J. W. Choi. 2010 Decolorization method of crude alkaline protease preparation produced from an alkalophilic Bacillus clausii. Biotechnol. Bioprocess Eng. Decolorization method of crude alkaline protease preparation produced from an alkalophilic Bacillus clausii. Biotechnol. 16: 89-96
 

30. Kumar, C. G. and H. Takagi. 1999 Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. 17: 561-594
 

31. Kumar, C. G., M. P. Tiwari, and K. D. Jany. 1999 Novel alkaline serine proteases from alkalophilic Bacillus sp.: Purification and characterization. Process Biochem. Novel alkaline serine proteases from alkalophilic Bacillus sp.: Purification and characterization. 34: 441-449
 

32. Kumar, C. G. and P. Parrack. 2003 Activated charcoal: A versatile decolorization agent for the recovery and purification of alkaline protease. World J. Microbiol. Biotechnol. Activated charcoal: A versatile decolorization agent for the recovery and purification of alkaline protease. World J. Microbiol. 19: 243-246
 

33. Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, et al. 1997 The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 237-238.  : -
  

34. Laemmli, U. K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22: 680-685.  : -
  

35. Manachini, P. L. and M. G. Fortina. 1998 Production in seawater of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. Lett. Production in seawater of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. 20: 565-568
 

36. Maurer, K. H. 2004 Detergent proteases. Curr. Opin. Biotechnol. Detergent proteases. Curr. Opin. 15: 330-334
  

37. Patel, R., M. Dodia, and S. P. Singh. 2005 Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. 40: 3569-3575
 

38. Phadatare, S. U., V. V. Deshpande, and M. C. Srinvasan. 1993 High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): Enzyme production and compatibility with commercial detergents. Enzyme Microb. Technol. High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): Enzyme production and compatibility with commercial detergents. Enzyme Microb. 15: 72-76
 

39. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998 Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. 62: 597-635
  

40. Rao, C. S., T. Sathish, P. Ravichandra, and R. S. Prakasham. 2009 Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of ecofriendly applications. Process Biochem. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of ecofriendly applications. 44: 262-268
 

41. Sadana, A. and A. M. Beelaram. 1994 Efficiency and economics of bioseparation: Some case studies. Bioseparation 4: 221-235.  : -
 

42. Saeki, K., J. Hitomi, M. Okuda, Y. Hatada, Y. Kageyama, M. Takaiwa, et al. 2002 A novel species of alkalophilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 6: 65-72.  : -
  

43. Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito. 2007 Detergent alkaline proteases: Enzymatic properties, genes, and crystal structures. J. Biosci. Bioeng. Detergent alkaline proteases: Enzymatic properties, genes, and crystal structures. J. Biosci. 103: 501-508
  

44. Samal, B. B., B. Karan, and Y. Stabinsky. 1990 Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol. Bioeng. Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol. 28: 609-612


45. Shivanand, P. and G. Jayaraman. 2009 Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochem. Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. 44: 1088-1094
 

46. Sigma, D. S. and G. Mooser. 1975 Chemical studies of enzyme active sites. Annu. Rev. Biochem. Chemical studies of enzyme active sites. Annu. Rev. 44: 889-931
  

47. Stepanov, V. M., G. N. Rudenskaya, L. P. Revina, Y. B. Gryanova, E. N. Lysogorskaya, and I. Y. Filippova. 1992 A serine proteinase of an archaebacterium, Halobacterium mediterranei. Biochem. J. A serine proteinase of an archaebacterium, Halobacterium mediterranei. Biochem. 283: 281-286
  

48. Studdert, C. A., M. K. H. Seitz, M. I. P. Gil, J. J. Sanchez, and R. E. de Castro. 2001 Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J. Basic Microbiol. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J. 41: 375-383
 

49. Takami, H., K. Nakasone, Y. Takaki, G. Maeno, R. Sasaki, N. Masui, et al. 2000 Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucl. Acids Res. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucl. 28: 4317-4331
   

50. Tunlid, A., S. Rosen, B. Ek, and L. Rask. 1994 Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140: 1687-1695.  : -
  

51. VijayAnand, S., J. Hemapriya, J. Selvin, and S. Kiran. 2010 Production and optimization of haloalkaliphilic protease by an extremophile-Halobacterium sp. Js1, isolated from thalassohaline environment. Global J. Biotechnol. Biochem. Production and optimization of haloalkaliphilic protease by an extremophile-Halobacterium sp. Js1, isolated from thalassohaline environment. Global J. Biotechno 5: 44-49


52. Wells, J. A., E. Ferrari, D. J. Henner, D. A. Estell, and E. Y. Chen. 1983 Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucl. Acids Res. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucl. 11: 7911-7925
   

53. Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L.Wang. 2000 Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. Technol. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. 26: 406-413
 

54. Zambare, V. P., S. S. Nilegaonkar, and P. P. Kanekar. 2007 Production of an alkaline protease by Bacillus cereus MCM B- 326 and its application as a dehairing agent. World J. Microbiol. Biotechnol. Production of an alkaline protease by Bacillus cereus MCM B- 326 and its application as a dehairing agent. World J. Microbiol. 23: 1569-1574
 

55. Jaouadi, B., N. Aghajari, R. Haser, and S. Bejar. 2010 Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92: 360-369.  : -
  

56. Hadj-Ali, N. E., R. Agrebi, B. Ghorbel-Frikha, A. Sellami- Kamoun, S. Kanoun, and M. Nasri. 2007 Biochemical and molecular characterization of a detergent stable alkaline serineprotease from a newly isolated Bacillus licheniformis NH1. Enzyme Microb. Technol. Biochemical and molecular characterization of a detergent stable alkaline serineprotease from a newly isolated Bacillus licheniformis NH1. Enzyme Microb. 40: 515-523
 

57. Huang, Q., Y. Peng, X. Li, H. Wang, and Y. Zhang. 2003 Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. 46: 169-173
  

58. Agrebi, R., A. Haddar, N. Hmidet, K. Jellouli, L. Manni, and M. Nasri. 2009 BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: Purification, biochemical and molecular characterization. Process Biochem. BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: Purification, biochemical and molecular characterization. 44: 1252-1259
 

59. Nakamura, T., Y. Yamagata, and E. Ichishima. 1992 Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. 56: 1869-1871
  

60. Ko, J. H., J. P. Yan, L. Zhu, and Y. P. Qi. 2004 Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp. Biochem. Physiol. C 137: 65-74.  : -


61. Liang, X., S. Jia, Y. Sun, M. Chen, X. Chen, and J. Zhong. 2007 Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli. Mol. Biotechnol. Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli. Mol. 37: 187-194
  

62. Lee, S. K., D. H. Bae, T. J. Kwon, S. B. Lee, H. H. Lee, and J. H. Park. 2001 Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J. Microbiol. Biotechnol. Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J. Microbiol. 11: 845-852


Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd