Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2011 ; 21(9): 972~978

AuthorJi-Hyeon Yeon, Kyung-Hwan Jung
AffiliationDepartment of Biotechnology, Chungju National University, Jeungpyung, Chungbuk 368-701, Korea
TitleRepeated-Batch Operation of Immobilized β-Galactosidase Inclusion Bodies-Containing Escherichia coli Cell Reactor for Lactose Hydrolysis
PublicationInfo J. Microbiol. Biotechnol.2011 ; 21(9): 972~978
AbstractIn this study, we investigated the performance of an immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor, where the cells were immobilized in alginate beads, which were then used in repeated-batch operations for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose over the long-term. In particular, in the Tris buffer system, disintegration of the alginate beads was not observed during the operation, which was observed for the phosphate buffer system. The o-nitrophenyl-β-Dgalactoside hydrolysis was operated successfully up to about 80 h, and the runs were successfully repeated at least eight times. In addition, hydrolysis of lactose was successfully carried out up to 240 h. Using Western blotting analyses, it was verified that the β-galactosidase inclusion bodies were sustained in the alginate beads during the repeatedbatch operations. Consequently, we experimentally verified that β-galactosidase inclusion bodies-containing Escherichia coli cells could be used in a repeated-batch reactor as a biocatalyst for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose. It is probable that this approach can be applied to enzymatic synthesis reactions for other biotechnology applications, particularly reactions that require long-term and stable operation.
Full-Text(PDF)
KeywordsRepeated-batch, active inclusion body, β-galactosidase, cell immobilization, alginate bead, Escherichia coli
References
1. Cao, L., F. van Rantwijk, and R. A. Sheldon. 2000 Crosslinked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase. Organic Lett. Crosslinked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase. 2: 1361-1364
  

2. Carrió, M. M., R. Cubarsi, and A. Villaverde. 2007 Fine architecture of bacterial inclusion bodies. FEBS Lett. Fine architecture of bacterial inclusion bodies. 471: 7-11
 

3. Dainty, A. L., K. H. Goulding, P. K. Robinson, I. Simpkins, and M. D. Trevan. 1986 Stability of alginate-immobilized algal cells. Biotechnol. Bioeng. Stability of alginate-immobilized algal cells. Biotechnol. 28: 210-216
  

4. Das, M. K. and P. C. Senapati. 2007 Evaluation of furosemideloaded alginate microspheres prepared by ionotropic external gelation technique. Acta Pol. Pharm. Evaluation of furosemideloaded alginate microspheres prepared by ionotropic external gelation technique. Acta Pol. 64: 253-262
 

5. Del Gaudio, P., P. Colombo, G. Colombo, P. Russo, and F. Sonvico. 2005 Mechanisms of formation and disintegration of alginate beads obtained by prilling. Int. J. Pharm. 302: 1-9
  

6. de Groot, N. S. and S. Ventura. 2006 Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett. Effect of temperature on protein quality in bacterial inclusion bodies. 580: 6471-6476
  

7. Elnashar, M. M., M. A. Yassin, A. E. A. Moneim, and E. M. A. Bary. 2010 Surprising performance of alginate beads for the release of low-molecular-weight drugs. J. Appl. Polym. Sci. Surprising performance of alginate beads for the release of low-molecular-weight drugs. J. Appl. Polym. 116: 3021-3026


8. Fontes, E. A. F., F. M. L. Passos, and F. J. V. Passos. 2001 A mechanistical mathematical model to predict lactose hydrolysis by β-galactosidase in a permeabilized cell mass of Kluyveromyces lactis: Validity and sensitivity analysis. Process Biochem. A mechanistical mathematical model to predict lactose hydrolysis by β-galactosidase in a permeabilized cell mass of Kluyveromyces lactis: Validity and sensitivi 37: 267-274
 

9. García-Fruitós, E., A. Arís, and A. Villaverde. 2007 Localization of functional polypeptides in bacterial inclusion bodies. Appl. Environ. Microbiol. Localization of functional polypeptides in bacterial inclusion bodies. Appl. Environ. 73: 289-294


10. Garcia-Fruitós, E., M. M. Carrio, A. Aris, and A. Villaverde. 2005 Folding of a misfolding-prone β-galactosidase in absence of DnaK. Biotechnol. Bioeng. Folding of a misfolding-prone β-galactosidase in absence of DnaK. Biotechnol. 90: 869-875


11. García-Fruitós, E., N. González-Montalbán, M. Morell, A. Vera, R. M. Ferraz, A. Arís, et al. 2005 Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb. Cell Fact. 4: 27.  : -


12. Haider, T. and Q. Husain. 2007 Calcium alginate entrapped preparations of Aspergillus oryzae β-galactosidase: Its stability and applications in the hydrolysis of lactose. Int. J. Biol. Macromol. 41: 72-80
  

13. Hung, C.-P., H.-F. Lo, W.-H. Hsu, S.-C. Chen, and L.-L. Lin. 2008 Immobilization of Escherichia coli novablue γ- glutamyltranspeptidase in Ca-alginate-k-carrageenan beads. Appl. Biochem. Biotechnol. Immobilization of Escherichia coli novablue γ- glutamyltranspeptidase in Ca-alginate-k-carrageenan beads. Appl. Biochem. 150: 157-170
  

14. Jung, K.-H. 2008 Enhanced enzyme activities of inclusion bodies of recombinant β-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. Enhanced enzyme activities of inclusion bodies of recombinant β-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promo 18: 434-442
 

15. Jung, K.-H., J.-H. Yeon, S.-K. Moon, and J. H. Choi. 2008 Methyl α-D-glucopyranoside enhances the enzymatic activity of recombinant β-galactosidase inclusion bodies in the araBAD promoter system of Escherichia coli. J. Ind. Microbiol. Biotechnol. Methyl α-D-glucopyranoside enhances the enzymatic activity of recombinant β-galactosidase inclusion bodies in the araBAD promoter system of Escherichia coli. J. 35: 695-701
  

16. Laderoa, M., A. Santosa, J. L. García, and F. García-Ochoa. 2001 Activity over lactose and ONPG of a genetically engineered β-galactosidase from Escherichia coli in solution and immobilized: Kinetic modeling. Enzyme Microb. Technol. Activity over lactose and ONPG of a genetically engineered β-galactosidase from Escherichia coli in solution and immobilized: Kinetic modeling. Enzyme Microb. 29: 181-193
 

17. Matricardi, P., C. D. Meo, T. Coviello, and F. Alhaique. 2008 Recent advances and perspectives on coated alginate microspheres for modified drug delivery. Expert Opin. Drug Deliv. Recent advances and perspectives on coated alginate microspheres for modified drug delivery. Expert Opin. 5: 417-425
  

18. Mavropoulou, I. P. and F. V. Kosikowski. 1973 Composition, solubility, and stability of whey powders. J. Dairy Sci. Composition, solubility, and stability of whey powders. J. 56: 1128-1134
 

19. Nahálka, J., A. Vikartovská, and E. Hrabárová. 2008 A crosslinked inclusion body process for sialic acid synthesis. J. Biotechnol. A crosslinked inclusion body process for sialic acid synthesis. J. 134: 146-153
  

20. Pessela, B. C. C., C. Mateo, M. Fuentes, A. Vian, J. L. García, A. V. Carrascosa, et al. 2003 The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products. Enzyme Microb. Technol. The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products. Enzym 33: 199-205
 

21. Ribeiro, C. C., C. C. Barrias, and M. A. Barbosa. 2004 Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 25: 4363-4373.  : -
  

22. Rinas, U., F. Hoffmann, E. Betiku, D. Estapé, and S. Marten. 2007 Inclusion body anatomy and functioning of chaperonemediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J. Biotechnol. Inclusion body anatomy and functioning of chaperonemediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia c 127: 244-257
  

23. Smidsrød, O. and G. Skjåk-Bræk. 1990 Alginate as immobilization matrix for cells. Trends Biotechnol. 8: 71-78  : -
 

24. Tokatlidis, K., P. Dhurjati, J. Millet, P. Béguin, and J. P. Aubert. 1991 High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett. High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. 282: 205-208
 

25. Tønnesen, H. H. and J. Karlsen. 2002 Alginate in drug delivery systems. Drug Dev. Ind. Pharm. Alginate in drug delivery systems. Drug Dev. Ind. 28: 621-630
  

26. Worrall, D. M. and N. H. Goss. 1989 The formation of biologically active β-galactosidase inclusion bodies in Escherichia coli. Aust. J. Biotechnol. The formation of biologically active β-galactosidase inclusion bodies in Escherichia coli. Aust. J. 3: 28-32
 

27. Yeon, J.-H. and K.-H. Jung. 2010 Change in compactness of inclusion bodies of recombinant β-galactosidase expressed in the araBAD promoter system of Escherichia coli. Biotechnol. Bioprocess Eng. Change in compactness of inclusion bodies of recombinant β-galactosidase expressed in the araBAD promoter system of Escherichia coli. Biotechnol. 15: 620-625
 

28. Yeon, J.-H. and K.-H. Jung. 2010 Operation of packed-bed immobilized cell reactor featuring active β-galactosidase inclusion body-containing recombinant Escherichia coli cells. Biotechnol. Bioprocess Eng. Operation of packed-bed immobilized cell reactor featuring active β-galactosidase inclusion body-containing recombinant Escherichia coli cells. Biotechnol. 15: 822-829


Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd