Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2011 ; 21(8): 846~853

AuthorJoon-Young Jung, Hyun Shik Yun, Jinwon Lee, Min-Kyu Oh
AffiliationDepartment of Chemical and Biological Engineering, Korea University, Seoul 136-713, Korea
TitleProduction of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae
PublicationInfo J. Microbiol. Biotechnol.2011 ; 21(8): 846~853
AbstractGlycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.
Full-Text(PDF)
KeywordsSaccharomyces cerevisiae, glycerol, 1,2-propanediol, metabolic engineering
References
1. Ahrens, K., K. Menzel, A. Zeng, and W. Deckwer. 1998 Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumonia in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol. Bioeng. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumonia in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissim 59: 544-552
 

2. Altaras, N. E. and D. C. Cameron. 1999 Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. 65: 1180-1185
  

3. Altaras, N. E. and D. C. Cameron. 2000 Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol. Prog. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol. 16: 940-946
  

4. Atkinson, B. M., F. 1982 Biochemical Engineering and Biotechnology Handbook. [Contains glossary]. Nature Press, New York.  : -


5. Barbirato, F., S. Astruc, P. Soucaille, C. Camarasa, J. M. Salmon, and A. Bories. 1997 Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: Limitations and regulations. Microbiology 143: 2423-2432.  : -
  

6. Bergmeyer, H. U. 1984 Methods of Enzymatic Analysis. Verlag Chemie, Weinheim.  : -


7. Bouvet, O. M., P. Lenormand, J. P. Carlier, and P. A. Grimont. 1994 Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Res. Microbiol. Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Res. 145: 129-139
 

8. Costenoble, R., H. Valadi, L. Gustafsson, C. Niklasson, and C. J. Franzen. 2000 Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16: 1483-1495.  : -
 

9. da Silva, G. P., M. Mack, and J. Contiero. 2009 Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. 27: 30-39
  

10. Dharmadi, Y., A. Murarka, and R. Gonzalez. 2006 Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnol. Bioeng. Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnol. 94: 821-829
  

11. Durnin, G., J. Clomburg, Z. Yeates, P. J. Alvarez, K. Zygourakis, P. Campbell, and R. Gonzalez. 2009 Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol. Bioeng. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol. 103: 148-161
  

12. Goldemberg, J. 2007 Ethanol for a sustainable energy future. Science 315: 808-810.  : -
  

13. Gonzalez, R., A. Murarka, Y. Dharmadi, and S. S. Yazdani. 2008 A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metab. Eng. A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metab. 10: 234-245
  

14. Hohmann, S. 2002 Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. 66: 300-372
   

15. Holst, B., C. Lunde, F. Lages, R. Oliveira, C. Lucas, and M. C. Kielland-Brandt. 2000 GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol. Microbiol. GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol. 37: 108-124
  

16. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983 Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. Transformation of intact yeast cells treated with alkali cations. J. 153: 163-168
  

17. Jarvis, G. N., E. R. Moore, and J. H. Thiele. 1997 Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J. Appl. Microbiol. Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J. Appl. 83: 166-174
  

18. Jeon, E., S. Lee, D. Kim, H. Yoon, M. Oh, C. Park, and J. Lee. 2009 Development of a Saccharomyces cerevisiae strain for the production of 1,2-propanediol by gene manipulation. Enzyme Microb. Technol. Development of a Saccharomyces cerevisiae strain for the production of 1,2-propanediol by gene manipulation. Enzyme Microb. 45: 42-47
 

19. Jung, J. Y., E. S. Choi, and M. K. Oh. 2008 Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J. Microbiol. 18: 1797-1802
 

20. Lee, W. and N. A. Dasilva. 2006 Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. Eng. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. 8: 58-65
  

21. Lin, E. C. 1976 Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. Glycerol dissimilation and its regulation in bacteria. Annu. Rev. 30: 535-578
  

22. McKendry, P. 2002 Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol. Energy production from biomass (Part 1): Overview of biomass. Bioresour. 83: 37-46
 

23. McKendry, P. 2002 Energy production from biomass (Part 2): Conversion technologies. Bioresour. Technol. Energy production from biomass (Part 2): Conversion technologies. Bioresour. 83: 47-54
 

24. Michnick, S., J. L. Roustan, F. Remize, P. Barre, and S. Dequin. 1997 Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13: 783-793.  : -
 

25. Neves, L., F. Lages, and C. Lucas. 2004 New insights on glycerol transport in Saccharomyces cerevisiae. FEBS Lett. New insights on glycerol transport in Saccharomyces cerevisiae. 565: 160-162
  

26. Nevoigt, E. and U. Stahl. 1996 Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12: 1331-1337.  : -
 

27. Nguyen, H. T. and E. Nevoigt. 2009 Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept. Metab. Eng. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept. Metab. 11: 335-346
  

28. Norbeck, J. and A. Blomberg. 1997 Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via t 272: 5544-5554
  

29. Overkamp, K. M., B. M. Bakker, P. Kotter, M. A. Luttik, J. P. Van Dijken, and J. T. Pronk. 2002 Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. 68: 2814-2821
   

30. Pahlman, A. K., K. Granath, R. Ansell, S. Hohmann, and L. Adler. 2001 The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaer 276: 3555-3563
  

31. Paulsen, I. T., M. K. Sliwinski, B. Nelissen, A. Goffeau, and M. H. Saier Jr. 1998 Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 430: 116-125  : -
 

32. Pavlik, P., M. Simon, T. Schuster, and H. Ruis. 1993 The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: Cloning and characterization. Curr. Genet. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: Cloning and characterization. Curr. 24: 21-25
  

33. Remize, F., J. L. Roustan, J. M. Sablayrolles, P. Barre, and S. Dequin. 1999 Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl. Environ. Microbiol. Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of f 65: 143-149
  

34. Shams Yazdani, S. and R. Gonzalez. 2008 Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and coproducts. Metab. Eng. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and coproducts. Metab. 10: 340-351


35. Sprenger, G. A., B. A. Hammer, E. A. Johnson, and E. C. Lin. 1989 Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J. Gen. Microbiol. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J. Gen. 135: 1255-1262
 

36. Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994 New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808.  : -
  

37. Yazdani, S. S. and R. Gonzalez. 2007 Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. 18: 213-219
  

38. Zheng, Z. M., Y. Z. Xu, H. J. Liu, N. N. Guo, Z. Z. Cai, and D. H. Liu. 2008 Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol. Bioeng. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol. 100: 923-932
  

Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd