Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2011 ; 21(8): 808~817

AuthorFrancieli Colussi, Viviane Serpa, Priscila da Silva Delabona, Livia Regina Manzine, Maria Luiza Voltatodio, Renata Alves, Bruno Luan Mello, Nei Pereira Jr., Cristiane Sanches Farinas, Alexander M. Golubev, Maria Auxiliadora Morim Santos, Igor Polikarpov
AffiliationInstituto de Fisica de Sao Carlos, Universidade de Sao Paulo Av. Trabalhador Saocarlense 400, Sao Carlos, 13560-970, SP, Brazil
TitlePurification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844
PublicationInfo J. Microbiol. Biotechnol.2011 ; 21(8): 808~817
AbstractBecause of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed α- helices and β-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of 50oC with specific activities against Avicel and p-nitrophenyl-β-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.
Full-Text(PDF)
KeywordsCellobiohydrolase I, catalytic core domain, Trichoderma harzianum 3844, purification, identification
References
1. Aboul- Enein, F. A., E. Serour, and T. Hussein. 2010 Purification and characterization of a novel thermoactive cellulase from thermophilic actinomycetes isolated from soil sample of Egypt. Int. J. Acad. Res. 2: 81-86


2. Aden, A., M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, et al. 2002 Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. National Renewable Energy Laboratory Golden, Colorado.  : -
 

3. Arantes, V. and J. N. Saddler. 2010 Access to cellulose limits the efficiency of enzymatic hydrolysis: The role of amorphogenesis. Biotech. Biofuels 3: 1-11.  : -


4. Bailey, S. 1994 The CCP4 suite : Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. The CCP4 suite : Programs for protein crystallography. Acta Crystallogr. D Biol. 50: 760-763
  

5. Bakare, M. K., I. O. Adewale, A. Ajayi, A. I. Okoh, and O. O. Shonukan. 2005 Purification and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. African J. Biotechnol. Purification and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. African J. 4: 898-904


6. Biochemistry IUo. 1961 Report of the Commission on Enzymes. Pergamon Press Oxford.  : -


7. Biochemistry IUo. 1965 Enzyme Nomenclature: Recommendations 1964 of the International Union of Biochemistry. Elsevier. Amesterdam.  : -


8. Boer, H., T. T. Teeri, and A. Koivula. 2000 Characterization of Trichoderma reesei cellobiohydrolase CeI7A secreted from Pichia pastoris using two different promoters. Biotech. Bioeng. Characterization of Trichoderma reesei cellobiohydrolase CeI7A secreted from Pichia pastoris using two different promoters. Biotech. 69: 486-494
 

9. Bradford, M. M. 1976 Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. 72: 248-254
 

10. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009 The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238.  : -
   

11. Carpita, N. C. and D. M. Gibeaut. 1993 Structural models of primary-cell walls in flowering plants: Consistency of molecular structure with the physical properties of the wall during growth. Plant J. Structural models of primary-cell walls in flowering plants: Consistency of molecular structure with the physical properties of the wall during growth. 3: 1-30
  

12. Castro, A., M. C. Ferreira, J. Cd. Cruz, K. C. R. Pedro, D. F. Carvalho, S. G. F. Leite, and N. Pereira Jr. 2010 High-yield endoglucanase production by Trichoderma harzianum IOC- 3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res. doi:10.4061/2010/854526.  : -
   

13. Claeyssens, S., A. Lavoinne, M. Freselragot, B. Bois-Joyeux, M. Chanez, and J. Peret. 1990 Metabolic changes in rats fed a low protein-diet during post-weaning growth. Metabol. Clin. Exp. Metabolic changes in rats fed a low protein-diet during post-weaning growth. Metabol. Clin. 39: 676-681
 

14. Cosgrove, D. J. 2005 Growth of the plant cell wall. Nature Rev Molec. Cell Biol. Growth of the plant cell wall. Nature Rev Molec. 6: 850-861
  

15. Davies, G. and B. Henrissat. 1995 Structures and mechanisms of glycosyl hydrolases. Structure 3: 853-859.  : -
 

16. Deshpande, M. V., K. E. Eriksson, and L. G. Pettersson. 1984 An assay for selective determination of exo-1,4,-beta-glucanase in a mixture of cellulolytic enzymes. Anal. Biochem. An assay for selective determination of exo-1,4,-beta-glucanase in a mixture of cellulolytic enzymes. Anal. 138: 481-487
 

17. Divne, C., J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Petterson, J. K. C. Knowles, et al. 1994 The 3-dimensional crystal-structure of the catalytic core of cellobiohydrolase-I from Trichoderma reesei. Science 265: 524-528.  : -
  

18. Divne, C., J. Stahlberg, T. T. Teeri, and J. T. Alwyn. 1998 High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Molec. Biol. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Molec 275: 309-325
  

19. Eftink, M. R. 2000 Use of fluorescence spectroscopy as thermodynamics tool. Energ. Biol. Macromolec. Use of fluorescence spectroscopy as thermodynamics tool. Energ. Biol. 323: 459-473
 

20. Fischer, H., M. Oliveira Neto, H. B. Napolitano, I. Polikarpov, and A. Craievich. 2010 The molecular weight of protein in solution can be determined for a single SAXS measurement on a relative scale. J. Appl. Crystallogr. The molecular weight of protein in solution can be determined for a single SAXS measurement on a relative scale. J. Appl. 43: 101-109
 

21. Gama, F. M., J. A. Teixeira, and M. Mota. 1994 Cellulose morphology and enzymatic reactivity: A modified solute exclusion technique. Biotechnol. Bioeng. Cellulose morphology and enzymatic reactivity: A modified solute exclusion technique. Biotechnol. 43: 381-387
  

22. Gusakov, A. V., A. P. Sinitsyn, T. N. Salanovich, F. E. Bukhtojarov, A. V. Markov, B. B. Ustinov, et al. 2005 Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzyme Microbial Technol. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrys 36: 57-69
 

23. Hammersley, A. P. 1997 FIT2D: An Introduction and Overview. ESRF Internal Report.  : -


24. Henrissat, B. 1991 A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. J. A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. 280: 309-316
  

25. Henrissat, B. 1994 Cellulases and their interaction with cellulose. Cellulose 1: 169-196.  : -
 

26. Henrissat, B. and A. Bairoch. 1993 New families in the classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. J. New families in the classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. 293: 781-788
  

27. Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust. 2007 Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 316: 804-807.  : -
  

28. Irwin, D. C., M. Spezio, L. P. Walker, D. B. Wilson. 1993 Activity studies of 8 purified cellulases: Specificity, synergism, and binding domain effects. Biotechnol. Bioeng. Activity studies of 8 purified cellulases: Specificity, synergism, and binding domain effects. Biotechnol. 42: 1002-1013
  

29. Jager, G., Z. J. Wu, K. Garschhammer, P. Engel, T. Klement, R. Rinaldi, et al. 2010 Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics. Biotechnol. Biofuels 3: 18.  : -
   

30. Jeoh, T., W. Michener, M. E. Himmel, S. R. Decker, and W. S. Adney. 2008 Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol. Biofuels 1: 10.  : -
   

31. Kraulis, P. J., G. M. Clore, M. Nilges, T. A. Jones, G. Pettersson, J. Knowles, and A. M. Gronenborn. 1989 Determination of the 3-dimensional solutions structure of the C-terminal domain of cellobiohydrolase-I from Trichoderma reesei: A study using nuclear magnetic ressonance and hybrid distance geometry dynamical simulated annealing. Biochemist  : -
  

32. Laemmli, U. K. 1970 Cleavage of structrural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-691.  : -
  

33. Lahjouji, K., R. Storms, Z. Xiao, K. B. Joung, Y. Zheng, J. Powlowski, et al. 2007 Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Appl. Microbiol. Biotechnol. Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Appl. Microbiol. 75: 337-346
  

34. Mandels, M. and J. Weber. 1969 Production of cellulases. Adv. Chem. Series 95: 391-398.  : -
 

35. Mansfield, S. D., C. Mooney, and J. N. Saddler. 1999 Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Progress 15: 804-816.  : -
  

36. Margeot, A., B. Hahn-Hagerdal, M. Edlund, R. Slade, F. Monot, et al. 2009 New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol. New improvements for lignocellulosic ethanol. Curr. Opin. 20: 372-380
  

37. Munoz, I. G., W. Ubhayasekera, H. Henriksson, I. Szabo, G. Pettersson, G. Johansson, et al. 2001 Family 7 cellobiohydrolases from Phanerochaete chrysosporium: Crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 angstrom resolution and homology models of the isozymes. J. Molecul. Biol. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: Crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 angstrom resolution and homolog 314: 1097-1111
  

38. Nieves, R. A., C. I. Ehrman, W. S. Adney, R. T. Elander, and M. E. Himmel. 1998 Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J. Microbiol. Biotechnol. Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J. Microbiol. 14: 301-304
 

39. Pollastri, G. and A. McLysaght. 2005 Porter: A new, accurate server for protein secondary structure prediction. Bioinformatics 21: 1719-1720.  : -
  

40. Prasad, S., A. Singh, and H. C. Joshi. 2007 Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. 50: 1-39
 

41. Raghothama, S., P. J. Simpson, L. Szabo, T. Nagy, H. Gilbert, and M. P. Williamson. 2000 Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry 39: 978-984.  : -
  

42. Shin, K., Y. H. Kim, M. Jeya, J. K. Lee, and Y. S. Kim. 2010 Purification and characterization of a thermostable cellobiohydrolase from Fomitopsis pinicola. J. Microbiol. Biotechnol. Purification and characterization of a thermostable cellobiohydrolase from Fomitopsis pinicola. J. Microbiol. 20: 1681-1688
  

43. Sreerama, N. and R. W. Woody. 2000 Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal 287: 252-260
  

44. Stahlberg, J., C. Divne, A. Koivula, K. Piens, M. Claeyssens, T. T. Teeri, et al. 1996 Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J. Molec. Biol. Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J. Molec. 264: 337-349
  

45. Stahlberg, J., G. Johansson, and G. Pettersson. 1991 A new model for enzymatic hydrolysis of cellulose based on the 2- domains structure of cellobiohydrolase-I. Biotechnology 9: 286-290.  : -
 

46. Stals, I., K. Sandra, S. Geysens, R. Contreras, J. Van Beeumen, M. Claeyssens, et al. 2004 Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14: 713-724.  : -
  

47. Tarentino, A. L. and T. H. Plummer Jr. 1994 Deglycosylation of asparagine-linked glycans: Purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enz. Deglycosylation of asparagine-linked glycans: Purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. 230: 44-57
 

48. Teeri, T. T. 1997 Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. Trends Biotechnol. Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. 15: 160-167
 

49. Teeri, T. T., A. Koivula, T. Reinikainen, L. Ruohonen, M. Srisodsuk, C. Divne, et al. 1994 Hydrolysis of crystaline cellulose by native and engineered Trichoderma reesei cellulases. Abstr. Papers Am. Chem. Soc. 207: 21-AGFD.  : -


50. Valaskova, V. and P. Baldrian. 2006 Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus: Production of extracellular enzymes and characterization of the major cellulases. Microbiology 152: 3613-3622.  : -
  

51. von Ossowski, I., J. Stahlberg, A. Koivula, K. Piens, D. Becker, H. Boer, et al. 2003 Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Ce17A. A comparison with Phanerochaete chrysosporium Cel7D. J. Molec. Biol. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Ce17A. A comparison with Phanerochaete chrysosporium Cel7D. J. Molec. 333: 817-829
 

52. Wang, L. S., J. Liu, Y. Z. Zhang, Y. Zhao, and P. J. Gao. 2003 Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S-38 by limited proteolysis. J. Molec. Catal. B Enzymatic 24: 27-38.  : -
 

53. Wolfenden, R. and M. J. Snider. 2001 The depth of chemical time and the power of enzymes as catalysts. Accounts Chem. Res. The depth of chemical time and the power of enzymes as catalysts. Accounts Chem. 34: 938-945
  

54. Wood, T. M. and K. M. Bhat. 1988 Methods for measuring cellulase activities. Methods Enz. Methods for measuring cellulase activities. 160: 87-112
 

55. Wu, S. T., J. Skolnick, and Y. Zhang. 2007 Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol. 5: 17.  : -
   

56. Zhang, Y. H. P., M. E. Himmel, and J. R. Mielenz. 2006 Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. 24: 452-481
  

57. Zhang, Y. H. P. and L. R. Lynd. 2004 Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. 88: 797-824
  

58. Zhou, J., Y. H. Wang, J. Chu, Y. P. Zhuang, S. L. Zhang, and P. Yin. 2008 Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-  : -
  

Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd