Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2011 ; 21(7): 757~765

AuthorBombi Lee, Sunoh Kwon, Mijung Yeom, Insop Shim, Hyejung Lee, Dae-Hyun Hahm
AffiliationAcupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
TitleWild Ginseng Attenuates Repeated Morphine-Induced Behavioral Sensitization in Rats
PublicationInfo J. Microbiol. Biotechnol.2011 ; 21(7): 757~765
AbstractMany studies have suggested that the behavioral and reinforcing effects of morphine are induced by hyperactivation of the mesolimbic dopaminergic system, which results in increases in locomotor activity, c-Fos expression in the nucleus accumbens (NAc), and tyrosine hydroxylase (TH) in the ventral tegmental area (VTA). In order to investigate the effect of wild ginseng (WG) on treating morphine addiction, we examined the behavioral sensitization of locomotor activity and c-Fos and TH expression in the rat brain using immunohistochemistry. Intraperitioneal injection of WG (100 and 200 mg/kg), 30 min before administration of a daily injection of morphine (40 mg/kg, s.c.), significantly inhibited morphine-induced increases in c-Fos expression in NAc and TH expression in VTA as well as in locomotor activity, as compared with Panax ginseng. It was demonstrated that the inhibitory effect of WG on the behavioral sensitization after repeated exposure to morphine was closely associated with the reduction of dopamine biosynthesis and postsynaptic neuronal activity. It suggests that WG extract may be effective for inhibiting the behavioral effects of morphine by possibly modulating the central dopaminergic system and that WG might be a useful resource to develop an agent for preventing and treating morphine addiction.
Full-Text(PDF)
Keywordsmorphine, ginseng, locomotor activity, c-Fos, tyrosine hydroxylase, dopamine
References
1. Alper, R. H., K. T. Demarest, and K. E. Moore. 1980 Morphine differentially alters synthesis and turnover of dopamine in central neuronal systems. J. Neural. Transm. Morphine differentially alters synthesis and turnover of dopamine in central neuronal systems. J. Neural. 48: 157-165
  

2. Cadoni, C. and G. D. Chiara. 1999 Reciprocal changes in dopamine responsiveness in the nucleus accumbens shell and core and in the dorsal caudate-putamen in rats sensitized to morphine. Neuroscience 90: 447-455.  : -
 

3. Curran, E. J., H. Akil, and S. J. Watson. 1996 Psychomotor stimulant and opiate-induced Fos mRNA expression patterns in the rat forebrain: Comparisons between acute drug treatment and a drug challenge in sensitized animals. Neurochem. Res. Psychomotor stimulant and opiate-induced Fos mRNA expression patterns in the rat forebrain: Comparisons between acute drug treatment and a drug challenge in sen 21: 1425-1435
  

4. Devine, D. P. and R. A. Wise. 1994 Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J. Neurosci. Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J. 14: 1978-1984
 

5. Everitt, B. J., A. Dickinson, and T. W. Robbins. 2001 The neuropsychological basis of addictive behavior. Brain Res. Rev. The neuropsychological basis of addictive behavior. Brain Res. 36: 129-138
 

6. Frankel, P. S., R. E. Harlan, and M. M. Garcia. 1999 Chronic administration of morphine alters immediate-early gene expression in the forebrain of post-dependent rats. Brain Res. Chronic administration of morphine alters immediate-early gene expression in the forebrain of post-dependent rats. 835: 204-212
 

7. Guo, M., J. H. Wang, J. Y. Yang, D. Zhu, N. J. Xu, G. Pei, C. F. Wu, and X. Li. 2004 Roles of ginsenosides on morphineinduced hyperactivity and rewarding effects in mice. Planta Med. Roles of ginsenosides on morphineinduced hyperactivity and rewarding effects in mice. 70: 688-690
  

8. Johnson, P. I. and T. C. Napier. 2000 Ventral pallidal injections of a mu antagonist block the development of behavioral sensitization to systemic morphine. Synapse 38: 61-70.  : -
 

9. Kim, H. S., C. G. Jang, W. K. Park, K. W. Oh, H. M. Rheu, D. H. Cho, and S. Oh. 1996 Blockade by ginseng total saponin of methamphetamine-induced hyperactivity and conditioned place preference in mice. Gen. Pharmacol. Blockade by ginseng total saponin of methamphetamine-induced hyperactivity and conditioned place preference in mice. Gen. 27: 199-204
 

10. Kim, H. S., J. G. Kang, Y. H. Seong, K. Y. Nam, and K. W. Oh. 1995 Blockade by ginseng total saponin of the development of cocaine induced reverse tolerance and dopamine receptor supersensitivity in mice. Pharmacol. Biochem. Behav. Blockade by ginseng total saponin of the development of cocaine induced reverse tolerance and dopamine receptor supersensitivity in mice. Pharmacol. Biochem. 50: 23-27
 

11. Kim, H. S. and K. S. Kim. 1999 Inhibitory effects of ginseng total saponin on nicotine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity. Behav. Brain Res. Inhibitory effects of ginseng total saponin on nicotine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity. Behav. 103: 55-61
 

12. Kim, H. C., E. J. Shin, C. G. Jang, M. K. Lee, J. S. Eun, J. T. Hong, and K. W. Oh. 2005 Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents. Arch. Pharm. Res. Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents. Arch. Pharm. 28: 995-1001
  

13. Kim, S. E., I. Shim, J. K. Chung, and M. C. Lee. 2006 Effect of ginseng saponins on enhanced dopaminergic transmission and locomotor hyperactivity induced by nicotine. Neuropsychopharmacology 31: 1714-1721.  : -
  

14. Kuribara, H. 1995 Modification of morphine sensitization by opioid and dopamine receptor antagonists: Evaluation by studying ambulation in mice. Eur. J. Pharmacol. Modification of morphine sensitization by opioid and dopamine receptor antagonists: Evaluation by studying ambulation in mice. Eur. J. 275: 251-258
 

15. Lee, B., S. M. Han, and I. Shim. 2009 Acupuncture attenuates cocaine-induced expression of behavioral sensitization in rats: Possible involvement of the dopaminergic system in the ventral tegmental area. Neurosci. Lett. Acupuncture attenuates cocaine-induced expression of behavioral sensitization in rats: Possible involvement of the dopaminergic system in the ventral tegmental 449: 128-132
 

16. Lee, B., J. Park, S. Kwon, M. W. Park, S. M. Oh, M. J. Yeom, I. Shim, H. J. Lee, and D. H. Hahm. 2010 Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus. J. Pharm. Pharmacol. Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus. J. Pharm. 62: 263-271
  

17. Lee, B., C. H. Yang, D. H. Hahm, H. J. Lee, S. M. Han, K. S. Kim, and I. Shim. 2008 Inhibitory effects of ginseng total saponins on behavioral sensitization and dopamine release induced by cocaine. Biol. Pharm. Bull. Inhibitory effects of ginseng total saponins on behavioral sensitization and dopamine release induced by cocaine. Biol. Pharm. 31: 436-441
 

18. Martin, T. J., M. Miller Jr., S. I. Dworkin, J. E. Smith, and L. J. Porrino. 1997 Alteration of local cerebral glucose utilization following intravenous administration of heroin in Fisher 344 rats. Brain Res. Alteration of local cerebral glucose utilization following intravenous administration of heroin in Fisher 344 rats. 755: 313-318
 

19. Nabata, H., H. Saito, and K. Takagi. 1973 Pharmacological studies of neutral saponins (GNS) of Panax ginseng root. Jpn. J. Pharmacol. Pharmacological studies of neutral saponins (GNS) of Panax ginseng root. Jpn. J. 23: 29-41
 

20. Orzi, F., F. Passarelli, M. L. Riccia, R. D. Grezia, and F. E. Pontieri. 1996 Intravenous morphine increases glucose utilization in the shell of the rat nucleus accumbens. Eur. J. Pharmacol. Intravenous morphine increases glucose utilization in the shell of the rat nucleus accumbens. Eur. J. 302: 49-51
 

21. Paxinos, G. and C. Watson. 1986 The Rat Brain in Stereotaxic Coordinates. New York, Academic Press.  : -


22. Pecins-Thompson, M. and J. Peris. 1993 Behavioral and neurochemical changes caused by repeated ethanol and cocaine administration. Psychopharmacology (Berl.) 110: 443-450.  : -
  

23. Phillips, T. J., A. J. Roberts, and C. N. Lessov. 1997 Behavioral sensitization to ethanol: Genetics and the effects of stress. Pharmacol. Biochem. Behav. Behavioral sensitization to ethanol: Genetics and the effects of stress. Pharmacol. Biochem. 57: 487-493
 

24. Pontieri, F. E., G. Tanda, and G. D. Chiara. 1995 Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the ‘shell’ as compared to the ‘core’ of the rat nucleus accumbens. Proc. Natl. Acad. Sci. USA 92: 12304-12308.  : -
 

25. Serrano, A., M. A. Aguilar, C. Manzanedo, M. Rodriguez- Arias, and J. Minarro. 2002 Effects of DA D1 and D2 antagonists on the sensitization to the motor effects of morphine in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 26: 263-271.  : -
 

26. Shim, I., J. I. Javaid, D. Wirtshafter, S. Y. Jang, K. H. Shin, H. J. Lee, Y. C. Chung, and B. G. Chun. 2001 Nicotine-induced behavioral sensitization is associated with extracellular dopamine release and expression of c-Fos in the striatum and nucleus accumbens of the rat. Behav. Brain Res. Nicotine-induced behavioral sensitization is associated with extracellular dopamine release and expression of c-Fos in the striatum and nucleus accumbens of the 121: 137-147
 

27. Stewart, J. 1983 Conditioned and unconditioned drug effects in relapse to opiate and stimulant drug self-administration. Prog. Neuropsychopharmacol. Biol. Psychiatry 7: 591-597.  : -
 

28. Sun, L. M., L. B. Zhen, and Y. J. Liu. 2006 Effects of electroacupuncture of low frequency on heroin-seeking behavior and Fos B protein expression in relative brain regions. Zhongguo Zhen Jiu 26: 833-837.  : -
 

29. Tachikawa, E., K. Kudo, M. Nunokawa, T. Kashimoto, E. Takahashi, and S. Kitagawa. 2001 Characterization of ginseng saponin ginsenoside-Rg(3) inhibition of catecholamine secretion in bovine adrenal chromaffin cells. Biochem. Pharmacol. Characterization of ginseng saponin ginsenoside-Rg(3) inhibition of catecholamine secretion in bovine adrenal chromaffin cells. Biochem. 62: 943-951
 

30. Takahashi, E., K. Kudo, K. Harada, T. Kashimoto, Y. Miyate, A. Kakizahi, and E. Takahashi. 1999 Effects of ginseng saponins on responses induced by various receptor stimuli. Eur. J. Pharmacol. Effects of ginseng saponins on responses induced by various receptor stimuli. Eur. J. 369: 23-32
 

31. Tanda, G., F. E. Pontieri, and G. D. Chiara. 1997 Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276: 2048-2050.  : -
  

32. Taracha, E., S. J. Chrapusta, M. Lehner, A. Skorzewska, P. Maciejak, J. Szyndler, and A. Plaznik. 2008 Morphine and methadone pre-exposures differently modify brain regional Fos protein expression and locomotor activity responses to morphine challenge in the rat. Drug Alcohol Depend. Morphine and methadone pre-exposures differently modify brain regional Fos protein expression and locomotor activity responses to morphine challenge in the rat. 97: 21-32
  

33. Tokuyama, S., K. W. Oh, H. S. Kim, M. Takahashi, and H. Kaneto. 1992 Blockade by ginseng extract of the development of reverse tolerance to the ambulation-accelerating effect of methamphetamine in mice. Japan J. Pharmacol. Blockade by ginseng extract of the development of reverse tolerance to the ambulation-accelerating effect of methamphetamine in mice. Japan J. 59: 423-425
 

34. Uslaner, J., A. Badiani, C. S. Norton, H. E. Day, S. J. Watson, H. Akil, and T. E. Robinson. 2001 Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neurosci. Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. 13: 1977-1983
  

35. van Ree, J. M., M. A. Gerrits, and L. J. Vanderschuren. 1999 Opioids, reward and addiction: An encounter of biology, psychology and medicine. Pharmacol. Rev. Opioids, reward and addiction: An encounter of biology, psychology and medicine. Pharmacol. 51: 341-396
 

36. Vanderschuren, L. J. and P. W. Kalivas. 2000 Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacology (Berl.) 151: 99-120.  : -
  

37. Vezina, P., P. W. Kalivas, and J. Stewart. 1987 Sensitization occurs to the locomotor effects of morphine and the specific mu-opioid receptor agonist, DAGO, administered repeatedly to the ventral tegmental area but not to the nucleus accumbens. Brain Res. Sensitization occurs to the locomotor effects of morphine and the specific mu-opioid receptor agonist, DAGO, administered repeatedly to the ventral tegmental ar 4: 51-58
 

38. Vries, D. T. J., A. N. Schoffelmeer, R. Binnekade, A. H. Mulder, and L. J. Vanderschuren. 1998 Drug-induced reinstatement of heroin- and cocaine-seeking behavior following long-term extinction is associated with expression of behavioral sensitization. Eur. J. Neurosci. Drug-induced reinstatement of heroin- and cocaine-seeking behavior following long-term extinction is associated with expression of behavioral sensitization. Eur 10: 3565-3571
  

39. Weissenborn, R., V. Deroche, G. F. Koob, and F. Weiss. 1966 Effects of dopamine agonists and antagonists on cocaineinduced operant responding for a cocaine-associated stimulus. Psychopharmacology (Berl.) 126: 311-322.  : -


40. Yoon, S. S., B. H. Lee, H. S. Kim, K. H. Choi, J. Yun, E. Y. Jang, et al. 2007 Potential roles of GABA receptors in morphine self-administration in rats. Neurosci. Lett. Potential roles of GABA receptors in morphine self-administration in rats. Neurosci. 428: 33-37
  

41. Young, S. T., L. J. Porrino, and M. J. Iadarola. 1991 Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA 88: 1291-1295.  : -
 

42. Zernig, G., I. A. O’Laughlin, and H. C Fibiger. 1997 Nicotine and heroin augment cocaine-induced dopamine overflow in nucleus accumbens. Eur. J. Pharmacol. Nicotine and heroin augment cocaine-induced dopamine overflow in nucleus accumbens. Eur. J. 337: 1-10
 

Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd