Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2011 ; 21(7): 703~710

AuthorMicky Vincent, Anthony L. Pometto III, J (Hans.) van Leeuwen
AffiliationDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia,Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA,Biorenewable Resources and Technology Program, Iowa State University, Ames, IA 50011, USA
TitleSimultaneous Saccharification and Fermentation of Ground Corn Stover for the Production of Fuel Ethanol Using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011
PublicationInfo J. Microbiol. Biotechnol.2011 ; 21(7): 703~710
AbstractEnzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.
Full-Text(PDF)
KeywordsPhanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, Escherichia coli K011, solid state fermentation, simultaneous saccharification and fermentation (SS
References
1. Abbas, A., H. Koc, F. Liu, and M. Tien. 2005 Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet. Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. 47: 49-56
  

2. Adney, B. and J. Baker. 2008 Measurement of Cellulase Activities. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42628. Available at http://www.nrel.gov/ biomass/pdfs/42628.pdf.  : -


3. Antai, S. P. and D. L. Crawford. 1981 Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains. Appl. Environ. Microbiol. Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains. Appl. Environ. 42: 378-380
  

4. Arantes, V. and A. M. F. Milagres. 2006 Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. J. Chem. Technol. Biotechnol. Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. J. Chem. Technol. 81: 413-419
 

5. Brekke, K. 2005 The promise of cellulosic ethanol. Ethanol Today 6: 32-35.  : -


6. Cantarella, M., L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. 2004 Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Progress 20: 200-206.  : -
  

7. Chundawat, S. P. S., B. Venkatesh, and B. E. Dale. 2007 Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. 96: 219-231
  

8. Cohen, R., M. R. Suzuki, and K. E. Hammel. 2005 Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. 71: 2412-2417
   

9. Crawford, D. L. and A. L. Pometto III. 1988 Acid-precipitable polymeric lignin: Production and analysis. Methods Enzymol. Acid-precipitable polymeric lignin: Production and analysis. 161: 35-47
 

10. Daniel, G., J. Volc, L. Filonova, O. Plíhal, E. Kubátov, and P. Halada. 2007 Characteristics of alcohol oxidase from the fungus Gloeophyllum trabeum, an extracellular source of H2O2 in brown rot decay of wood. Appl. Environ. Microbiol. Characteristics of alcohol oxidase from the fungus Gloeophyllum trabeum, an extracellular source of H2O2 in brown rot decay of wood. Appl. Environ. 73: 6241-6253
   

11. de La Torre Ugarte, D. G., M. E. Walsh, H. Shapouri, and S. P. Slinsky. 2003 The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture. Agricultural Economic Report No. 816. U. S. Department of Agriculture, Economic Research Service, U. S. Government Printing Office, Washington, DC.  : -


12. Donohoe, B. S., M. J. Selig, S. Viamajala, T. B. Vinzant, W. S. Adney, and M. E. Himmel. 2009 Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy. Biotechnol. Bioeng. Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy. Biotechnol. 103: 480-489
  

13. Duguid, K. B., M. D. Montross, C. W. Radtke, C. L. Crofcheck, L. M. Wendt, and S.A. Shearer. 2009 Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresour. Technol. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresour. 100: 5189-5195
  

14. Eliasson, A., C. Christensson, C. F. Wahlbom, and B. H. Gerdal. 2000 Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. 66: 3381-3386
   

15. Galbe, M. and G. Zacchi. 2007 Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. 108: 41-65
  

16. García-Cubero, M. T., G. González-Benito, I. Indacoechea, M. Coca, and S. Bolado. 2009 Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour. Technol. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour. 100: 1608-1613
  

17. Gebler, J. C., R. Aebersold, and S. G. Withers. 1992 Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) β- galactosidase from Escherichia coli. J. Biol. Chem. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) β- galactosidase from Escherichia coli. J. Biol. 267: 11126-11130
 

18. Ghose, T. K. 1987 Measurement of cellulase activites. Pure Appl. Chem. Measurement of cellulase activites. Pure Appl. 59: 257-268
 

19. He, X., Y. Miao, X. Jiang, Z. Xu, and P. Ouyang. 2010 Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Appl. Biochem. Biotechnol. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Appl. Biochem. 160: 2449-2457
  

20. Hendriks, A. T. W. M. and G. Zeeman. 2009 Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. 100: 10-18
  

21. Keating, J. D., C. Panganiban, and S. D. Mansfield. 2006 Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. 93: 1196-1206
  

22. Kerem Z., K. A. Jensen Jr, and K. E. Hammel. 1999 Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. 446: 49-54
 

23. Kersten, P. and D. Cullen. 2007 Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Gen. Biol. Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Gen. 44: 77-87
  

24. Keshwani, D. R. and J. J. Cheng. 2009 Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. Switchgrass for bioethanol and other value-added applications: A review. Bioresour. 100: 1515-1523
  

25. Kim, T. H., N. P. Nghiem, and K. B. Hicks. 2009 Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Appl. Biochem. Biotechnol. Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Appl. Biochem. 153: 171-179
  

26. Kumar, R. and C. E. Wyman. 2009 Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol. Bioeng. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol. 103: 252-267
  

27. Lim, K. N. 2004 Conversion of lignocellulosic biomass to fuel ethanol - A brief review. The Planter 80: 517-524.  : -


28. Liu, S., K. A. Skinner-Nemec, and T. D. Leathers. 2008 Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J. Ind. Microbiol. Biotechnol. Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J. Ind. Microbiol. 35: 75-81
  

29. Liu, H., M. Yan, C. Lai, L. Xu, and P. Ouyang. 2010 gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl. Biochem. 160: 574-582
  

30. Martinez, D., L. F. Larrondo, N. Putnam, M. D. Sollewijn- Gelpke, K. Huang, J. Chapman, et al. 2004 Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. 22: 695-700
  

31. Mussatto, S. I., M. Fernandes, A. M. F. Milagres, and I. C. Roberto. 2008 Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb. Technol. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb. 43: 124-129
 

32. Nigam, J. N. 2001 Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. 87: 17-27
 

33. Nguyen, M. T., S. P. Choi, J. Lee, J. H. Lee, and S. J. Sim. 2009 Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. 19: 161-166
  

34. Okuyama, M., A. Kaneko, H. Mori, S. Chiba, and A. Kimura. 2005 Structural elements to convert Escherichia coli alpha xylosidase (YicI) into alpha-glucosidase. FEBS Lett. Structural elements to convert Escherichia coli alpha xylosidase (YicI) into alpha-glucosidase. 580: 2707-2711
  

35. Park, Y. W. and H. D. Yun. 1999 Cloning of the Escherichia coli endo-1,4-D-glucanase gene and identification of its product. Mol. Gen. Genet. Cloning of the Escherichia coli endo-1,4-D-glucanase gene and identification of its product. Mol. Gen. 261: 236-241
 

36. Pordesimo, L. O., B. R. Hames, S. Sokhansanj, and W. C. Edens. 2005 Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 28: 366-374.  : -
 

37. Ramos, L. P. 2003 The chemistry involved in the steam pretreatment of lignocellulosic materials. Quim. Nova 26: 863- 871.  : -
 

38. Rasmussen, M. L., P. Shrestha, S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2010 Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour. Technol. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour. 101: 3526-3533
  

39. Salaspuro, V., S. Nyfors, R. Heine, A. Siitonen, M. Salaspuro, and H. Jousimies-Somer. 1999 Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions. Scand. J. Gastroenterol. Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions. Sc 34: 967-973
 

40. Sanchez, C. 2009 Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. 27: 185-194
  

41. Saqib, A. A. N. and P. J. Whitney. 2006 Role of fragmentation activity in cellulose hydrolysis. Int. Biodeterior. Biodegrad. 58: 180-185
  

42. Selig, M. J., T. B. Vinzant, M. E. Himmel, and S. R. Decker. 2009 The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Bioc 155: 397-406
  

43. Shrestha, P., M. Rasmussen, S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2008 Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J. Agric. Food Chem. Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J. Agric. 56: 3918-3924
  

44. Shrestha, P., S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2009 Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by hydrolysate fermentation to ethanol. J. Agric. Food Chem. Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by hydrolysate fermentation to ethanol. J. Agric. 57: 4156-4161
  

45. Shrestha, P., S. K. Khanal, A. L. Pometto, and J. (Hans) van Leeuwen. 2010 Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresour. Technol. Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresour. 101: 8698-8705
  

46. Sokhansanj, S., A. Turhollow, J. Cushman, and J. Cundi. 2002 Engineering aspects of collecting corn stover for bioenergy. Biomass Bioenergy 23: 347-355.  : -
 

47. Sørensen, A., P. J. Teller, T. Hilstrøm, and B. K. Ahring.  Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour. Technol 99: 6602-6607
 

48. Su, D., J. Sun, P. Liu, and Y. Lu. 2006 Effects of different pretreatment modes on the enzymatic digestibility of corn leaf and corn stalk. Chin. J. Chem. Eng. Effects of different pretreatment modes on the enzymatic digestibility of corn leaf and corn stalk. Chin. J. Chem. 14: 796-801
 

49. Sun, Y. and J. Cheng. 2002 Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. 83: 1-11
 

50. Suzuki, H., K. Igarashi, and M. Samejima. 2008 Real-time quantitative analysis of carbon catabolite derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. Real-time quantitative analysis of carbon catabolite derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium. Appl. Microb 80: 99-106
  

51. Varga, E., H. B. Klinke, K. Rczey, and A. B. Thomsen. 2004 High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol. Bioeng. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol. 88: 567-574
  

52. Vogel, K. P., J. F. Pedersen, S. D. Masterson, and J. J. Toy. 1999 Evaluation of a filter bag system for NDF, ADF and IVDMD forage analysis. Crop Sci. Evaluation of a filter bag system for NDF, ADF and IVDMD forage analysis. 39: 276-279
 

53. Weiss, N. D., J. D. Farmer, and D. J. Schell. 2010 Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresour. Technol. Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bi 101: 674-678
  

54. Wymelenberg, A. V., G. Sabat, B. Martinez, A. S. Rajangam, T. T. Teeri, J. Gaskell, P. J. Kersten, and D. Cullen. 2005 The Phanerochaete chrysosporium secretome: Database predictions and initial mass spectrometry peptide identifications in cellulosegrown medium. J. Biotechnol. The Phanerochaete chrysosporium secretome: Database predictions and initial mass spectrometry peptide identifications in cellulosegrown medium. J. 118: 17-34
  

55. Yang, B., D. M. Willies, and C. E. Wyman. 2006 Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol. Bioeng. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol. 94: 1122-1128
  

56. Yang, C. P., Z. Q. Shen, G. Yu, and J. L. Wang. 2008 Effect and after effect of radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour. Technol. Effect and after effect of radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour. 99: 6240-6245
  

57. Yu, J., J. Zhang, J. He, Z. Liu, and Z. Yu. 2009 Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour. Technol. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour. 100: 903-908


Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd