Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2011 ; 21(5): 503~508

AuthorJung-Youn Choi, Ah-Reum Park, Yong Jin Kim, Jae-Jin Kim, Chang-Jun Cha, Jeong-Jun Yoon
AffiliationEco Technology Center, Chungcheong Regional Division, Korea Institute of Industrial Technology (KITECH), Cheonan, Chungnam 330-825, Republic of Korea,Department of Biotechnology and BET Institute, College of Industrial Science, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
TitlePurification and Characterization of an Extracellular β-Glucosidase Produced by Phoma sp. KCTC11825BP Isolated from Rotten Mandarin Peel
PublicationInfo J. Microbiol. Biotechnol.2011 ; 21(5): 503~508
AbstractA β-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified β-glucosidase evidenced high homology with the fungal β- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60oC, and the enzyme had a half-life of 53 h at 60oC. The Km values for p-nitrophenyl-β-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-δ-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.
Full-Text(PDF)
KeywordsPhoma sp., β-glucosidase, Identification, Purification, Characterization
References
1. Bradford, M. M. 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254  : -
 

2. Conner, R. L., R. A. Declerck-Floate, F. L. Leggett, J. D. Bissett, and G. C. Kozub. 2000 Impact of a disease and a defoliating insect on houndstongue (Cynoglossum officinale) growth: Implications for weed biological control. Ann. Appl. Biol. Impact of a disease and a defoliating insect on houndstongue (Cynoglossum officinale) growth: Implications for weed biological control. Ann. Appl. 136: 297-305
 

3. Coughlan, M. P. 1992 Enzymic hydrolysis of cellulose: An overview. Bioresour. Technol. Enzymic hydrolysis of cellulose: An overview. Bioresour. 39: 107-115
 

4. Daroit, D. J., A. Simonetti, P. F. Hertz, and A. Brandelli. 2008 Purification and characterization of an extracellular β-glucosidase from Monascus purpureus. J. Microbiol. Biotechnol. Purification and characterization of an extracellular β-glucosidase from Monascus purpureus. J. Microbiol. 18: 933-941
 

5. Decker, C. H., J. Visser, and P. Schreier. 2000 β-Glucosidases from five black Aspergillus species: Study of their physicochemical and biocatalytic properties. J. Agric. Food Chem. β-Glucosidases from five black Aspergillus species: Study of their physicochemical and biocatalytic properties. J. Agric. 48: 4929-4936
  

6. Dekker, R. F. H. 1981 Induction, localization and characterization of β-glucosidases produced by a species of Monilia. J. Gen. Microbiol. Induction, localization and characterization of β-glucosidases produced by a species of Monilia. J. Gen. 127: 177-184


7. Grohmann, K., E. A. Baldwin, and B. S. Buslig. 1994 Production of ethanol from enzymaticaily hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. Production of ethanol from enzymaticaily hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl. Biochem. 45: 515-527
  

8. Gueguen, Y., P. Chemardin, A. Arnaud, and P. Galzy. 1995 Purification and characterization of an intracellular β-glucosidase from Botrytis cinerea. Enzyme Microb. Technol. Purification and characterization of an intracellular β-glucosidase from Botrytis cinerea. Enzyme Microb. 17: 900-906
 

9. Kumar, S., M. Nei, J. Dudley, and K. Tamura. 2008 MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. 9: 299-306
   

10. Laemmli, U. K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.  : -
  

11. Leite, R. S. R., E. Gomes, and R. Da-Silva. 2007 Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Process Biochem. Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiac 42: 1101-1106
 

12. Lymar, E. S., B. Li, and V. Renganathan. 1995 Purification and characterization of a cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. Purification and characterization of a cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Environ. 61: 2976-2980
  

13. Manici, L. M., F. Caputo, and G. Baruzzi. 2005 Additional experiences to elucidate the microbial component of soil suppressiveness towards strawberry black root complex. Ann. Appl. Biol. Additional experiences to elucidate the microbial component of soil suppressiveness towards strawberry black root complex. Ann. Appl. 146: 421-431
 

14. Montero, M. A. and A. Romeu. 1992 Kinetic study on the β- glucosidase catalysed reaction of Trichoderma viride cellulase. Appl. Microbiol. Biotechnol. Kinetic study on the β- glucosidase catalysed reaction of Trichoderma viride cellulase. Appl. Microbiol. 38: 350-353
 

15. Murai, T., M. Ueda, T. Kawaguchi, M. Arai, and A. Tanaka. 1998 Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl. Environ. Microbiol. Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl. E 64: 4857-4861
  

16. Murray, P., N. Aro, C. Collins, A. Grassick, M. Penttila, M. Saloheimo, and M. Tuohy. 2004 Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr. Purif. Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Pr 38: 248-257
  

17. Parry, N. J., D. E. Beever, E. Owen, I. Vandenberghe, B. J. Van, and M. K. Bhat. 2001 Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem. J. Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem. 353: 117-127
 

18. Riou, C., J.-M. Salmon, M.-J. Vallier, Z. Günata, and P. Barre. 1998 Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl. Environ. 64: 3607-3614
  

19. Saha, B. C. and R. J. Bothast. 1996 Production, purification, and characterization of a highly glucose-tolerant novel β- glucosidase from Candida peltata. Appl. Environ. Microbiol. Production, purification, and characterization of a highly glucose-tolerant novel β- glucosidase from Candida peltata. Appl. Environ. 62: 3165-3170
  

20. White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. Academic Press, London.  : -


21. Wood, B. E. and L. O. Ingram. 1992 Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cel Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomon 58: 2103-2110
  

22. Wood, F. M. and S. I. McCrae. 1982 Purification and some properties of the extracellular β-glucosidase of the cellulolytic fungus Trichoderma koningii. J. Gen. Microbiol. Purification and some properties of the extracellular β-glucosidase of the cellulolytic fungus Trichoderma koningii. J. Gen. 128: 2973-2982


23. Woodward, J., M. Lima, and N. E. Lee. 1988 The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. J. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. 255: 895-899
  

24. Yoon, J.-J., K.-Y. Kim, and C.-J. Cha. 2008 Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J. Microbiol. Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J. 46: 51-55
  

Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd