Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2011 ; 21(2): 162~169

AuthorEuhlim Oh, Mingshou Lu, Changhun Park, Changhun Park, Han Bin Oh, Sang Yup Lee, Jinwon Lee
AffiliationDepartment of Chemial and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
TitleDynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis
PublicationInfo J. Microbiol. Biotechnol.2011 ; 21(2): 162~169
AbstractA dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).
Full-Text(PDF)
Keywordslactic acid, chemostat, intracellular metabolite flux analysis, parameter estimation, metabolic control analysis, LC-MS
References
1. Chassagnole, C., N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, and M. Reuss. 2002 Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. 79: 53-73
  

2. de Koning, W. and K. van Dam. 1992 A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. 204: 118-123
 

3. Doi, Y. 1990 Microbial Polyesters. VCH Publishers, NY, USA.  : -


4. Faijes, M., A. E Mars, and E. J. Smid. 2007 Comparision of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb. Cell Fact. 6: 27.  : -
   

5. Fromm, H. J. and V. Zewe. 1962 Kinetics studies of yeast hexokinase. J. Biol. Chem. Kinetics studies of yeast hexokinase. J. Biol. 237: 3027-3032
 

6. Heinrich, R. and T. A. Rapoport. 1974 A linear steady state treatment of enzymatic chains: General properties, control and effector strength. Eur. J. Biochem. A linear steady state treatment of enzymatic chains: General properties, control and effector strength. Eur. J. 42: 89-95
  

7. Hoefnagel, M. H. N., M. J. C. Starrenburg, D. E. Martens, J. Hugenholtz, M. Kleerebezem, I. Van Swam, R. Bongers, H. V. Westerhoff, and J. L. Snoep. 2002 Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiology 148: 1003-1013.  : -
 

8. Hoefnagel, M. H. N., A. van der Burgt, D. E. Martens, J. Hugenholtz, and J. L. Snoep. 2002 Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol. Biol. Rep. Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol. Biol. 29: 157-161
  

9. Ishii, N., M. Robert, Y. Nakayama, A. Kanai, and M. Tomita. 2004 Toward large-scale modeling of the microbial cell for computer simulation. J. Biotechnol. Toward large-scale modeling of the microbial cell for computer simulation. J. 113: 281-294
  

10. Kacser, H. and J. A Burns. 1973 The control of flux. Symp. Soc. Exp. Biol. The control of flux. Symp. Soc. Exp. 27: 65-104
 

11. Katoh, T., D. Yuguchi, H. Yoshii, H. Shi, and K .Shimizu. 1999 Dynamics and modeling on fermentative production of poly (β- hydroxybutyric acid) from sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Alcaligenes eutrophus. J. Biotechnol. Dynamics and modeling on fermentative production of poly (β- hydroxybutyric acid) from sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Al 67: 113-134
 

12. Lee, S. Y., D. Y. Lee, and T. Y. Kim. 2005 Systems biotechnology for strain improvement. Trends Biotechnol. Systems biotechnology for strain improvement. 23: 349-358
  

13. Luo, B., K. Groenke, R. Takors, C. Wandrey, and M. Oldiges. 2007 Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pahtway and tricarboxylic acid cycle by liquid chromatography-mass spectrometery. J. Chromatogr. A 1147: 153-164.  : -
  

14. Melchiorsen, C. R., N. B. Siemsen Jensen, B. Christensen, V. K. Jokumsen, and J. Villadsen. 2000 Dynamics of pyruvate metabolism in Lactococcus lactis. Biotechnol. Bioeng. Dynamics of pyruvate metabolism in Lactococcus lactis. Biotechnol. 74: 271-279
  

15. Neves, A. R., A. Ramos, C. M. Nunes, M. Kleerebezem, J. Hugenholtz, M. W. de Vos, J. Almeida, and H. Santos. 1999 In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol, Bioeng. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. 64: 200-212
 

16. Neves, A. R., W. A. Pool, J. Kok, O. P. Kuipers, and H. Santos. 2005 Overview on sugar metabolism and its control in Lactococcus lactis - The input from in vivo NMR. FEMS Microbiol. Rev. Overview on sugar metabolism and its control in Lactococcus lactis - The input from in vivo NMR. FEMS Microbiol. 29: 531-554
 

17. Ramos, A., A. R. Neves, and H. Santos. 2002 Metabolism of lactic acid bacteria studied by nuclear magnetic resonance. Antonie Van Leeuwenhoek 82: 249-261.  : -
  

18. Richter, O., A. Betz, and C. Giersch. 1975 The response of oscillating glycolysis to perturbations in the NADH/NAD system: A comparison between experiments and a computer model. BioSystems 7: 137-146.  : -
 

19. Rizzi, M., U. Theobald, E. Querfurth, T. Rohrhirsch, M. Baltes, and M. Reuss. 1996 In vivo investigations of glucose transport in Saccharomyces cerevisiae. Biotechnol. Bioeng. In vivo investigations of glucose transport in Saccharomyces cerevisiae. Biotechnol. 49: 316-327
 

20. Rizzi, M., M. Baltes, U. Theobald, and M. Reuss. 1997 In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae; II. Mathematical model. Biotechnol. Bioeng. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae; II. Mathematical model. Biotechnol. 55: 592-608
 

21. Sjoberg, A., I. Persson, M. Quednau, and B. Hahn-Hagerdal. 1995 The influence of limiting and non-limiting growth conditions on glucose and maltose metabolism in Lactococcus lactis ssp. lactis strains. Appl. Microbiol. Biotechnol. The influence of limiting and non-limiting growth conditions on glucose and maltose metabolism in Lactococcus lactis ssp. lactis strains. Appl. Microbiol. 42: 931-938
 

22. Stephanopoulos, G. N., A. A. Aristidou, and J. Nielsen. 1998 Metabolic Engineering. Academic Press, San Diego, USA.  : -


23. Theobald, U., W. Mailinger, M. Blates, M. Rizzi, and M. Reuss. 1997 In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. 55: 305-316
 

24. Thompson, J. 1987 Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Lett. Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. 46: 221-231
 

25. van Niel, W. J., K. Hofvendahl, and B. Hahn-Hagerdal. 2002 Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions. Appl. Environ. Microbiol. Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions. Appl. Environ. 68: 4350-4356
   

26. Vickory, B. T. 1985 Lactic Acid, pp. 761-776. Dic Pergamon, Toronto, Canada.  : -


Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd