Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2011 ; 21(10): 1064~1068

AuthorEun-Hee Park, Ha-Yeon Lee, Yeon-Woo Ryu, Jin-Ho Seo, Myoung-Dong Kim
AffiliationSchool of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 200-701, Korea
TitleRole of Osmotic and Salt Stress in the Expression of Erythrose Reductase in Candida magnoliae
PublicationInfo J. Microbiol. Biotechnol.2011 ; 21(10): 1064~1068
AbstractThe osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG- 3'), found in Saccharomyces cerevisiae, exists 72 nucleotides upstream of the translation initiation codon. An enzyme activity assay and semiquantitative reverse transcription polymerase chain reaction revealed that the expression of CmER is upregulated under osmotic and salt stress conditions caused by a high concentration of sugar, KCl, and NaCl. However, CmER was not affected by osmotic and oxidative stress induced by sorbitol and H2O2, respectively. The basal transcript level of CmER in the presence of sucrose was higher than that in cells treated with fructose and glucose, indicating that the response of CmER to sugar stress is different from that of GRE3 in S. cerevisiae, which expresses aldose reductase in a sugarindependent manner. It was concluded that regulation of CmER differs from that of other aldose reductases in S. cerevisiae.
Full-Text(PDF)
KeywordsCandida magnoliae, erythrose reductase, aldose reductase, Saccharomyces cerevisiae, stress reponse
References
1. Aguilera, J. and J. A. Prieto. 2001 The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr. Genet. The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr. 39: 273-283
  

2. Marina, A., Y. Aoki, G. M. Pastore, and Y. K. Park. 1993 Microbial transformation of sucrose and glucose to erythritol. Biotechnol. Lett. Microbial transformation of sucrose and glucose to erythritol. Biotechnol. 15: 383-388
 

3. Choi, J. H., M. D. Kim, J. H. Seo, and J. W. Ahn. 2003 Effects of fermentation conditions on production of erythritol by Candida magnoliae. Kor. J. Food Sci. Technol. Effects of fermentation conditions on production of erythritol by Candida magnoliae. Kor. J. Food Sci. 35: 708-712


4. Garay-Arroyo, A. and A. A. Covarrubias. 1999 Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892.  : -
 

5. Garreau, H., R. N. Hasan, G. Renault, F. Estruch, E. Boy- Marcotte, and M. Jacquet. 2000 Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146: 2113-2120.  : -
 

6. Goossens, J. and H. Roper. 1994 Erythritol: A new sweetener. Food Sci. Technol. Today 8:144-149.  : -


7. Hiele, M., Y. Ghoos, P. Rutgeerts, and G. Vantrappen. 1993 Metabolism of erythritol in humans: Comparison with glucose and lactitol. Br. J. Nutr. Metabolism of erythritol in humans: Comparison with glucose and lactitol. Br. J. 69: 169-176
 

8. Ishizuka, H., K. Tokuoka, T. Sasaki, and H. Taniguchi. 1992 Purification and some properties of an erythrose reductase from an Aureobasidium sp. mutant. Biosci. Biotechnol. Biochem. Purification and some properties of an erythrose reductase from an Aureobasidium sp. mutant. Biosci. Biotechnol. 56: 941-945
 

9. Ishizuka, H., K. Wako, T. Kasumi, and T. Sasaki. 1989 Breeding of a mutant of Aureobasidium sp. with high erythritol production. J. Ferment. Bioeng. Breeding of a mutant of Aureobasidium sp. with high erythritol production. J. Ferment. 68: 310-314
 

10. Kim, S. Y., S. S. Park, Y. J. Jeon, and J. H. Seo. 1996 Analysis of fermentation characteristics for production of erythritol by Candida sp. Kor. J. Food Sci. Technol. Analysis of fermentation characteristics for production of erythritol by Candida sp. Kor. J. Food Sci. 28: 935-939


11. Kobayashi, N. and K. McEntee. 1993 Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. 13: 248-256
  

12. Koh, E. S., T. H. Lee, D. Y. Lee, H. J. Kim, Y. W. Ryu, and J. H. Seo. 2003 Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol. Lett. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol. 25: 2103-2105
 

13. Lee, D. H., Y. J. Lee, Y. W. Ryu, and J. H. Seo. 2010 Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH 110. Microb. Cell Fact. 9: 43.  : -
  

14. Lee, K. H., J. H. Seo, and Y. W. Ryu. 2002 Fermentation characteristics of salt-tolerant mutant, Candida magnoliae M26, for the production of erythritol. Kor. J. Biotechnol. Bioeng. Fermentation characteristics of salt-tolerant mutant, Candida magnoliae M26, for the production of erythritol. Kor. J. Biotechnol. 17: 509-514


15. Lee, J. K., S. J. Ha, S. Y. Kim, and D. K. Oh. 2000 Increased erythritol production in Torula sp. by Mn2+ and Cu2+. Biotechnol. Lett. Increased erythritol production in Torula sp. by Mn2+ and Cu2+. Biotechnol. 22: 983-986
 

16. Lee, J. K., K. W. Hong, and S. Y. Kim. 2003 Purification and properties of a NADPH-dependent erythrose reductase from the newly isolated Torula corallina. Biotechnol. Prog. Purification and properties of a NADPH-dependent erythrose reductase from the newly isolated Torula corallina. Biotechnol. 19: 495-500
  

17. Lee, J. K., S. Y. Kim, Y. W. Ryu, J. H. Seo, and J. H. Kim. 2003 Purification and characterization of a novel erythrose reductase from Candida magnoliae. Appl. Environ. Microbiol. Purification and characterization of a novel erythrose reductase from Candida magnoliae. Appl. Environ. 69: 3710-3718
   

18. Lee, J. K., B. S. Koo, and S. Y. Kim. 2002 Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Appl. Environ. Microbiol. Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Appl. Environ. 68: 4534-4538
   

19. Munro, I. C., W. O. Bernt, J. F. Borzelleca, G. Flamm, B. S. Lynch, E. Kennepohl, et al. 1998 Erythritol: An interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem. Toxicol. Erythritol: An interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem. 36: 1139-1174
 

20. Norbeck, J. and A. Blomberg. 1997 Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via t 272: 5544-5554
  

21. Oechsner, U., V. Magdolen, and W. Bandlow. 1988 A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate eye lens protein. FEBS Lett. A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate eye lens protein. 238: 123-128
 

22. Otey, F. H., J. W. Sloan, C. A. Wilham, and C. L. Mehltretter. 1961 Erythritol and ethylene glycol from dialdehyde starch. Ind. Eng. Chem. Erythritol and ethylene glycol from dialdehyde starch. Ind. Eng. 53: 267-268
 

23. Park, S. Y., J. H. Seo, and Y. W. Ryu. 2003 Two-stage fedbatch culture of Candida magnoliae for the production of erythritol using an industrial medium. Kor. J. Biotechnol. Bioeng. Two-stage fedbatch culture of Candida magnoliae for the production of erythritol using an industrial medium. Kor. J. Biotechnol. 18: 249-254


24. Pfeifer, V. F., V. E. Sohns, H. F. Conway, E. B. Lancaster, S. Dabic, and E. L. Griffin. 1960 Two-stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Ind. Eng. Chem. Two-stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Ind. Eng. 52: 201-206
 

25. Tokuoka, K., H. Ishizuka, K. Wako, and H. Taniguchi. 1992 Comparison of three forms of erythrose reductase from an Aureobasidium sp. mutant. J. Gen. Appl. Microbiol. Comparison of three forms of erythrose reductase from an Aureobasidium sp. mutant. J. Gen. Appl. 38: 145-155
 

26. Veiga-da-Cunha, M., H. Santos, and E. Van Schaftingen. 1993 Pathway and regulation of erythritol formation in Leuconostoc oenos. J. Bacteriol. Pathway and regulation of erythritol formation in Leuconostoc oenos. J. 175: 3941-3948
  

27. Yu, J. H., D. H. Lee, Y. J. Oh, K. C. Han, Y. W. Ryu, and J. H. Seo. 2006 Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Appl. Biochem. Biotechnol. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Appl. Biochem. 131: 870-879
 

Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd