Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2019 ; 29(5): 667~686

AuthorNamil Lee, Soonkyu Hwang, Yongjae Lee, Suhyung Cho, Bernhard Palsson, Byung-Kwan Cho
AffiliationKorea Advanced Institute of Science and Technology, Republic of Korea
TitleSynthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces
PublicationInfo J. Microbiol. Biotechnol.2019 ; 29(5): 667~686
AbstractStreptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.
Full-Text(PDF)
KeywordsStreptomyces, secondary metabolites, biosynthetic gene cluster, antibiotics, synthetic biology, genome editing
References
  1. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, et al. 2008. Genome sequence of the streptomycinproducing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190: 4050-4060.
    Pubmed CrossRef Pubmed Central
  2. Khan ST, Komaki H, Motohashi K, Kozone I, Mukai A, Takagi M, et al. 2011. Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environ. Microbiol. 13: 391-403.
    Pubmed CrossRef
  3. Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J. Antibiot. (Tokyo) 70: 865-870.
    Pubmed CrossRef
  4. Lim FY, Sanchez JF, Wang CC, Keller NP. 2012. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol. 517: 303-324.
    Pubmed CrossRef Pubmed Central
  5. Medema MH, Alam MT, Breitling R, Takano E. 2011. The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng. Bugs. 2: 230-233.
    Pubmed CrossRef
  6. Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E. 2012. Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Lett. 586:2177-2183.
    Pubmed CrossRef
  7. Yang YH, Song E, Lee BR, Kim EJ, Park SH, Kim YG, et al. 2010. Rapid functional screening of Streptomyces coelicolor regulators by use of a pH indicator and application to the MarR-like regulator AbsC. Appl. Environ. Microbiol. 76:3645-3656.
    Pubmed CrossRef Pubmed Central
  8. Myronovskyi M, Luzhetskyy A. 2016. Native and engineered promoters in natural product discovery. Nat. Prod. Rep. 33:1006-1019.
    Pubmed CrossRef
  9. Ziemert N, Alanjary M, Weber T. 2016. The evolution of genome mining in microbes - a review. Nat. Prod. Rep. 33:988-1005.
    Pubmed CrossRef
  10. Harrison J, Studholme DJ. 2014. Recently published Streptomyces genome sequences. Microb. Biotechnol. 7: 373-380.
    Pubmed CrossRef Pubmed Central
  11. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.
  12. Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y, Tamura T. 2018. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci. Rep. 8: 6888.
    Pubmed CrossRef Pubmed Central
  13. Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D. 2008. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res. 36: 6882-6892.
    Pubmed CrossRef Pubmed Central
  14. Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH. 2009. Automated genome mining for natural products. BMC Bioinformatics 10: 185.
    Pubmed CrossRef Pubmed Central
  15. Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL, et al. 2015. Genomes to natural products prediction informatics for secondary metabolomes (PRISM). Nucleic Acids Res. 43: 9645-9662.
    Pubmed CrossRef Pubmed Central
  16. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. 2017. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45: W36-W41.
    Pubmed CrossRef Pubmed Central
  17. Weber T, Kim HU. 2016. The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth. Syst. Biotechnol. 1: 69-79.
    Pubmed CrossRef Pubmed Central
  18. Low ZJ, Pang LM, Ding Y, Cheang QW, Le Mai Hoang K, Thi Tran H, et al. 2018. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Sci. Rep. 8: 1594.
    Pubmed CrossRef Pubmed Central
  19. Jia N, Ding MZ, Luo H, Gao F, Yuan YJ. 2017. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103. Sci. Rep. 7: 44786.
    Pubmed CrossRef Pubmed Central
  20. Zhang G, Yu D, Sang B, Feng J, Han L, Zhang X. 2017. Genome-wide analysis reveals the secondary metabolome in Streptomyces kanasensis ZX01. Genes (Basel) 8: 346.
    Pubmed CrossRef Pubmed Central
  21. Ansari MZ, Yadav G, Gokhale RS, Mohanty D. 2004. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32: W405-413.
    Pubmed CrossRef Pubmed Central
  22. Kim MS, Cho WJ, Song MC, Park SW, Kim K, Kim E, et al. 2017. Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis. Microb. Cell Fact. 16: 9.
    Pubmed CrossRef Pubmed Central
  23. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, et al. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526-531.
    Pubmed CrossRef
  24. Bode HB, Bethe B, Hofs R, Zeeck A. 2002. Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem. 3: 619-627.
    CrossRef
  25. Marmann A, Aly AH, Lin W, Wang B, Proksch P. 2014. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs. 12:1043-1065.
    Pubmed CrossRef Pubmed Central
  26. Baral B, Akhgari A, Metsa-Ketela M. 2018. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth. Syst. Biotechnol. 3: 163-178.
    Pubmed CrossRef Pubmed Central
  27. King AA, Chater KF. 1986. The expression of the Escherichia coli lacZ gene in Streptomyces. J. Gen. Microbiol. 132: 1739-1752.
    Pubmed CrossRef
  28. Lussier FX, Denis F, Shareck F. 2010. Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl. Environ. Microbiol. 76: 967-970.
    Pubmed CrossRef Pubmed Central
  29. Mitra A, Angamuthu K, Jayashree HV, Nagaraja V. 2009. Occurrence, divergence and evolution of intrinsic terminators across eubacteria. Genomics 94: 110-116.
    Pubmed CrossRef
  30. Bibb MJ, White J, Ward JM, Janssen GR. 1994. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol. Microbiol. 14: 533-545.
    Pubmed CrossRef
  31. Bibb MJ, Janssen GR, Ward JM. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38: 215-226.
    CrossRef
  32. Kieser T, Bibb M, Buttner M, Chater K, Hopwood D. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, England.
  33. Wang W, Li X, Wang J, Xiang S, Feng X, Yang K. 2013. An engineered strong promoter for Streptomycetes. Appl. Environ. Microbiol. 79: 4484-4492.
    Pubmed CrossRef Pubmed Central
  34. Labes G, Bibb M, Wohlleben W. 1997. Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter. Microbiology 143: 1503-1512.
    Pubmed CrossRef
  35. Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H. 2013. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth. Biol. 2: 662-669.
    Pubmed CrossRef Pubmed Central
  36. Sohoni SV, Fazio A, Workman CT, Mijakovic I, Lantz AE. 2014. Synthetic promoter library for modulation of actinorhodin production in Streptomyces coelicolor A3(2). PLoS One 9: e99701.
    Pubmed CrossRef Pubmed Central
  37. Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ. 2011. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl. Microbiol. Biotechnol. 90: 615-623.
    Pubmed CrossRef
  38. Luo Y, Zhang L, Barton KW, Zhao H. 2015. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth. Biol. 4: 1001-1010.
    Pubmed CrossRef
  39. Li S, Wang J, Li X, Yin S, Wang W, Yang K. 2015. Genomewide identification and evaluation of constitutive promoters in Streptomycetes. Microb. Cell Fact. 14: 172.
    Pubmed CrossRef Pubmed Central
  40. Murakami T, Holt TG, Thompson CJ. 1989. Thiostreptoninduced gene expression in Streptomyces lividans. J. Bacteriol. 171: 1459-1466.
    Pubmed CrossRef Pubmed Central
  41. Takano E, White J, Thompson CJ, Bibb MJ. 1995. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166:133-137.
    CrossRef
  42. Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin (Shanghai) 47: 231-243.
    Pubmed CrossRef
  43. Rodriguez-Garcia A, Combes P, Perez-Redondo R, Smith MC, Smith MC. 2005. Natural and synthetic tetracyclineinducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res. 33: e87.
    Pubmed CrossRef Pubmed Central
  44. Horbal L, Fedorenko V, Luzhetskyy A. 2014. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl. Microbiol. Biotechnol. 98: 8641-8655.
    Pubmed CrossRef
  45. Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, et al. 2004. Hyper-inducible expression system for Streptomycetes. Proc. Natl. Acad. Sci. USA 101: 14031-14035.
    Pubmed CrossRef Pubmed Central
  46. Noguchi Y, Kashiwagi N, Uzura A, Ogino C, Kondo A, Ikeda H, et al. 2018. Development of a strictly regulated xylose-induced expression system in Streptomyces. Microb. Cell Fact. 17: 151.
    Pubmed CrossRef Pubmed Central
  47. Hindle Z, Smith CP. 1994. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol. Microbiol. 12: 737-745.
    Pubmed CrossRef
  48. Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ. 1986. Construction and characterisation of a series of multicopy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. 203: 468-478.
    CrossRef
  49. Pulido D, Jimenez A, Salas M, Mellado RP. 1987. A Bacillus subtilis phage phi 29 transcription terminator is efficiently recognized in Streptomyces lividans. Gene 56: 277-282.
    CrossRef
  50. Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4: 723-728.
    Pubmed CrossRef Pubmed Central
  51. West S, Proudfoot NJ. 2009. Transcriptional termination enhances protein expression in human cells. Mol. Cell. 33:354-364.
    Pubmed CrossRef Pubmed Central
  52. Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E, Jensen TH. 2010. Crosstalk between mRNA 3’ end processing and transcription initiation. Mol. Cell. 40: 410-422.
    Pubmed CrossRef
  53. Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, et al. 2016. Term-seq reveals abundant riboregulation of antibiotics resistance in bacteria. Science 352:aad9822.
    Pubmed CrossRef Pubmed Central
  54. Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25: 117-124.
    Pubmed CrossRef
  55. Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ, et al. 2016. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat. Commun. 7: 11605.
    Pubmed CrossRef Pubmed Central
  56. Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60:512-538.
  57. Na D, Lee D. 2010. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26: 2633-2634.
    Pubmed CrossRef
  58. Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J, et al. 2015. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl. Acad. Sci. USA 112:12181-12186.
    Pubmed CrossRef Pubmed Central
  59. Yi JS, Kim MW, Kim M, Jeong Y, Kim EJ, Cho BK, et al. 2017. A novel approach for gene expression optimization through native promoter and 5’ UTR combinations based on RNA-seq, Ribo-seq, and TSS-seq of Streptomyces coelicolor. ACS Synth. Biol. 6: 555-565.
    Pubmed CrossRef
  60. Janssen GR, Bibb MJ. 1990. Tandem promoters, tsrp1 and tsrp2, direct transcription of the thiostrepton resistance gene (tsr) of Streptomyces azureus: transcriptional initiation from tsrp2 occurs after deletion of the -35 region. Mol. Gen. Genet. 221: 339-346.
    CrossRef
  61. Sohaskey CD, Im H, Nelson AD, Schauer AT. 1992. Tn4556 and luciferase: synergistic tools for visualizing transcription in Streptomyces. Gene 115: 67-71.
    CrossRef
  62. Ingram C, Brawner M, Youngman P, Westpheling J. 1989. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J. Bacteriol. 171: 6617-6624.
    Pubmed CrossRef Pubmed Central
  63. Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A. 2011. Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl. Environ Microbiol. 77: 5370-5383.
    Pubmed CrossRef Pubmed Central
  64. Flores FJ, Rincon J, Martin JF. 2003. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb. Cell Fact. 2: 5.
    Pubmed CrossRef Pubmed Central
  65. Willemse J, van Wezel GP. 2009. Imaging of Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization. PLoS One 4: e4242.
    Pubmed CrossRef Pubmed Central
  66. Santos-Beneit F, Errington J. 2017. Green fluorescent protein as a reporter for the spatial and temporal expression of actIII in Streptomyces coelicolor. Arch. Microbiol. 199: 875-880.
    Pubmed CrossRef Pubmed Central
  67. Nguyen KD, Au-Young SH, Nodwell JR. 2007. Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid 58: 167-173.
    Pubmed CrossRef
  68. Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, et al. 2017. Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth. Biol. 6: 159-166.
    Pubmed CrossRef
  69. Siegl T, Luzhetskyy A. 2012. Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek. 102: 503-516.
    Pubmed CrossRef
  70. Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, et al. 2012. Site-specific recombination strategies for engineering actinomycete genomes. Appl. Environ. Microbiol. 78: 1804-1812.
    Pubmed CrossRef Pubmed Central
  71. Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, et al. 2006. Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res. 34: e20.
    Pubmed CrossRef Pubmed Central
  72. Zelyas N, Tahlan K, Jensen SE. 2009. Use of the native flp gene to generate in-frame unmarked mutations in Streptomyces spp. Gene 443: 48-54.
    Pubmed CrossRef
  73. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712.
    Pubmed CrossRef
  74. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823.
    Pubmed CrossRef Pubmed Central
  75. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41: 4336-4343.
    Pubmed CrossRef Pubmed Central
  76. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10: 741-743.
    Pubmed CrossRef Pubmed Central
  77. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPRCas systems. Nat. Biotechnol. 31: 233-239.
    Pubmed CrossRef Pubmed Central
  78. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. 2013. Multiplex and homologous recombinationmediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688-691.
    Pubmed CrossRef Pubmed Central
  79. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
    Pubmed CrossRef Pubmed Central
  80. Bibikova M, Beumer K, Trautman JK, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764.
    Pubmed CrossRef
  81. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757-761.
    Pubmed CrossRef Pubmed Central
  82. Rouet P, Smih F, Jasin M. 1994. Introduction of doublestrand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14: 8096-8106.
    Pubmed CrossRef Pubmed Central
  83. Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.
    Pubmed CrossRef
  84. Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569-573.
    Pubmed CrossRef Pubmed Central
  85. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155: 733-740.
    Pubmed CrossRef
  86. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4: 1020-1029.
    Pubmed CrossRef
  87. Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, et al. 2017. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13:607-609.
    Pubmed CrossRef Pubmed Central
  88. Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, et al. 2015. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl. Microbiol. Biotechnol. 99: 10575-10585.
    Pubmed CrossRef
  89. Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y. 2017. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab. Eng. 40: 80-92.
    Pubmed CrossRef
  90. Meng J, Feng R, Zheng G, Ge M, Mast Y, Wohlleben W, et al. 2017. Improvement of pristinamycin I (PI) production in Streptomyces pristinaespiralis by metabolic engineering approaches. Synth. Syst. Biotechnol. 2: 130-136.
    Pubmed CrossRef Pubmed Central
  91. Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, et al. 2017. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem. Sci. 8: 3218-3227.
    Pubmed CrossRef Pubmed Central
  92. Wang Y, Cobb RE, Zhao H. 2016. High-efficiency genome editing of Streptomyces species by an engineered CRISPR/Cas System. Methods Enzymol. 575: 271-284.
    Pubmed CrossRef
  93. Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. 2017. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163: 1148-1155.
    Pubmed CrossRef
  94. Tao W, Yang A, Deng Z, Sun Y. 2018. CRISPR/Cas9-based editing of Streptomyces for discovery, characterization, and production of natural products. Front Microbiol. 9: 1660.
    Pubmed CrossRef Pubmed Central
  95. Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, et al. 2015. In vitro CRISPR/Cas9 system for efficient targeted DNA editing. MBio 6: e01714-01715.
    Pubmed CrossRef Pubmed Central
  96. Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. 2015. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 6: 8101.
    Pubmed CrossRef Pubmed Central
  97. Kang HS, Charlop-Powers Z, Brady SF. 2016. Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synth. Biol. 5: 1002-1010.
    Pubmed CrossRef Pubmed Central
  98. Tao W, Yurkovich ME, Wen S, Lebe KE, Samborskyy M, Liu Y, et al. 2016. A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis. Chem. Sci. 7: 376-385.
    Pubmed CrossRef Pubmed Central
  99. Li L, Wei K, Liu X, Wu Y, Zhensg G, Chen S, et al. 2019. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab. Eng. 52: 153-167.
    Pubmed CrossRef
  100. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 2013. Repurposing CRISPR as an RNAguided platform for sequence-specific control of gene expression. Cell 152: 1173-1183.
    Pubmed CrossRef Pubmed Central
  101. Zhao Y, Li L, Zheng G, Jiang W, Deng Z, Wang Z, et al. 2018. CRISPR/dCas9-mediated multiplex gene repression in Streptomyces. Biotechnol. J. 13: e1800121.
    Pubmed CrossRef
  102. Xu Z, Wang Y, Chater KF, Ou HY, Xu HH, Deng Z, et al. 2017. Large-scale transposition mutagenesis of Streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis. Appl. Environ. Microbiol. 83: e02889-02816.
    Pubmed CrossRef Pubmed Central
  103. Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. 2010. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 107: 2646-2651.
    Pubmed CrossRef Pubmed Central
  104. Gomez-Escribano JP, Bibb MJ. 2011. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb. Biotechnol. 4: 207-215.
    Pubmed CrossRef Pubmed Central
  105. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771.
    Pubmed CrossRef Pubmed Central
  106. Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, et al. 2018. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl. Environ. Microbiol. 84: e00827-00818.
    Pubmed CrossRef Pubmed Central
  107. Xu M, Wright GD. 2018. Heterologous expression-facilitated natural products’ discovery in actinomycetes. J. Ind. Microbiol. Biotechnol. 46: 415-431.
    Pubmed CrossRef
  108. Liu R, Deng Z, Liu T. 2018. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab. Eng. 50: 74-84.
    Pubmed CrossRef
  109. Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. 2017. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in Streptomyces Species. Front. Microbiol. 8: 394.
    Pubmed CrossRef Pubmed Central
  110. Rutledge PJ, Challis GL. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13: 509-523.
    Pubmed CrossRef
  111. Katz M, Hover BM, Brady SF. 2016. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol Biotechnol. 43: 129-141.
    Pubmed CrossRef
  112. Pyeon HR, Nah HJ, Kang SH, Choi SS, Kim ES. 2017. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Fact. 16: 96.
    Pubmed CrossRef Pubmed Central
  113. Nah HJ, Woo MW, Choi SS, Kim ES. 2015. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Fact. 14: 140.
    Pubmed CrossRef Pubmed Central
  114. Du D, Wang L, Tian Y, Liu H, Tan H, Niu G. 2015. Genome engineering and direct cloning of antibiotic gene clusters via phage varphiBT1 integrase-mediated sitespecific recombination in Streptomyces. Sci Rep. 5: 8740.
    Pubmed CrossRef Pubmed Central
  115. Greunke C, Duell ER, D’Agostino PM, Glockle A, Lamm K, Gulder TAM. 2018. Direct pathway cloning (DiPaC) to unlock natural product biosynthetic potential. Metab. Eng. 47: 334-345.
    Pubmed CrossRef
  116. Shao Z, Luo Y, Zhao H. 2011. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol. Biosyst. 7: 1056-1059.
    Pubmed CrossRef Pubmed Central
  117. Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, et al. 2012. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat. Biotechnol. 30: 440-446.
    Pubmed CrossRef
  118. Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, et al. 2014. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl. Acad. Sci. USA 11: 1957-1962.
    Pubmed CrossRef Pubmed Central
  119. Orr-Weaver TL, Szostak JW, Rothstein RJ. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci USA 78: 6354-6358.
    Pubmed CrossRef Pubmed Central
  120. Lee NC, Larionov V, Kouprina N. 2015. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res. 43: e55.
    Pubmed CrossRef Pubmed Central
  121. Bu QT, Yu P, Wang J, Li ZY, Chen XA, Mao XM, et al. 2019. Rational construction of genome-reduced and highefficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Microb. Cell Fact. 18: 16.
    Pubmed CrossRef Pubmed Central
  122. Myronovskyi M, Rosenkranzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A. 2018. Generation of a clusterfree Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab. Eng. 49: 316-324.
    Pubmed CrossRef
  123. Xu M, Wang Y, Zhao Z, Gao G, Huang SX, Kang Q, et al. 2016. Functional genome mining for metabolites encoded by large gene clusters through heterologous expression of a whole-genome bacterial artificial chromosome library in Streptomyces spp. Appl. Environ. Microbiol. 82: 5795-5805.
    Pubmed CrossRef Pubmed Central
  124. Liu Q, Xiao L, Zhou Y, Deng K, Tan G, Han Y, et al. 2016. Development of Streptomyces sp. FR-008 as an emerging chassis. Synth. Syst. Biotechnol. 1: 207-214.
    Pubmed CrossRef Pubmed Central
  125. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, et al. 2013. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth. Biol. 2: 384-396.
    Pubmed CrossRef Pubmed Central
  126. Daniels W, Bouvin J, Busche T, Kalinowski J, Bernaerts K. 2016. Finding targets for genome reduction in Streptomyces lividans TK24 using flux balance analysis. IFAC-PapersOnLine 49: 252-257.
    CrossRef
  127. Toro L, Pinilla L, Avignone-Rossa C, Rios-Estepa R. 2018. An enhanced genome-scale metabolic reconstruction of Streptomyces clavuligerus identifies novel strain improvement strategies. Bioprocess Biosyst. Eng. 41: 657-669.
    Pubmed CrossRef
  128. Kallifidas D, Jiang G, Ding Y, Luesch H. 2018. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters. Microb. Cell Fact. 17: 25.
    Pubmed CrossRef Pubmed Central
  129. Machado H, Tuttle RN, Jensen PR. 2017. Omics-based natural product discovery and the lexicon of genome mining. Curr. Opin. Microbiol. 39: 136-142.
    Pubmed CrossRef Pubmed Central
  130. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186-191.
    Pubmed CrossRef Pubmed Central
  131. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, et al. 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566: 218-223.
    Pubmed CrossRef
  132. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPRCas system. Nucleic Acids Res. 41: 7429-7437.
    Pubmed CrossRef Pubmed Central
  133. Siu KH, Chen W. 2019. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. Nat. Chem. Biol. 15: 217-220.
    Pubmed CrossRef
  134. Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N, et al. 2011. Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins. J. Bacteriol. 193: 1142-1153.
    Pubmed CrossRef Pubmed Central
  135. Miao V, Coeffet-Legal MF, Brian P, Brost R, Penn J, Whiting A, et al. 2005. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151: 1507-1523.
    Pubmed CrossRef
  136. Myronovskyi M, Rosenkranzer B, Luzhetskyy A. 2014. Iterative marker excision system. Appl. Microbiol. Biotechnol. 98: 4557-4570.
    Pubmed CrossRef
  137. Thapa LP, Oh TJ, Lee HC, Liou K, Park JW, Yoon YJ, et al. 2007. Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) in Streptomyces venezuelae YJ003. Appl. Microbiol. Biotechnol. 76: 1357-1364.
    Pubmed CrossRef
  138. Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ. 2013. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 8: e69319.
    Pubmed CrossRef Pubmed Central
  139. Steffensky M, Muhlenweg A, Wang ZX, Li SM, Heide L. 2000. Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob. Agents Chemother. 44: 1214-1222.
    Pubmed CrossRef Pubmed Central
  140. Zhao Z, Shi T, Xu M, Brock NL, Zhao YL, Wang Y, et al. 2016. Hybrubins: Bipyrrole tetramic acids obtained by crosstalk between a truncated undecylprodigiosin pathway and heterologous tetramic acid biosynthetic genes. Org. Lett. 18: 572-575.
    Pubmed CrossRef
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd