|
|
 2018 ; 28(2):
267~274
Author | Mi-Ae Han, Seong-Joo Hong, Z-Hun Kim, Byung-Kwan Cho, Hookeun Lee, Hyung-Kyoon Choi, Choul-Gyun Lee |
Affiliation | Marine Bioenergy R&D Center, Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea |
Title | Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp. |
PublicationInfo |
J. Microbiol. Biotechnol.2018 ; 28(2):
267~274 |
Abstract | Lipids in microalgae are energy-rich compounds and considered as an attractive feedstock for
biodiesel production. To redirect carbon flux from competing pathways to the fatty acid
synthesis pathway of Tetraselmis sp., we used three types of chemical inhibitors that can block
the starch synthesis pathway or photorespiration, under nitrogen-sufficient and nitrogendeficient
conditions. The starch synthesis pathway in chloroplasts and the cytosol can be
inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 1,2-cyclohexane diamine tetraacetic
acid (CDTA), respectively. Degradation of glycine into ammonia during photorespiration was
blocked by aminooxyacetate (AOA) to maintain biomass concentration. Inhibition of starch
synthesis pathways in the cytosol by CDTA increased fatty acid productivity by 27% under
nitrogen deficiency, whereas the blocking of photorespiration in mitochondria by AOA was
increased by 35% under nitrogen-sufficient conditions. The results of this study indicate that
blocking starch or photorespiration pathways may redirect the carbon flux to fatty acid
synthesis. |
Full-Text(PDF) |  |
Keywords | Tetraselmis sp., fatty acids, carbohydrates, nitrogen starvation, chemical inhibitors |
References |
Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232. Procházková G, Brányiková I, Zachleder V, Brányik T. 2014. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J. Appl. Phycol. 26: 1359-1377. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48: 1146-1151. Ho SH, Chen CY, Chang JS. 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113: 244-252. Jiang Y, Yoshida T, Quigg A. 2012. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol. Biochem. 54: 70-77. Khozin-Goldberg I, Cohen Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701. Xin L, Hu HY, Ke G, Sun YX. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101: 5494-5500. Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. Look back at the US department of energy¡¯s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, Golden, CO, USA. Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. 2013. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour. Technol. 131: 188-194. Gimpel JA, Specht EA, Georgianna DR, Mayfield SP. 2013. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr. Opin. Chem. Biol. 17: 489-495. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19:430-436. Sirikhachornkit A, Vuttipongchaikij S, Suttangkakul A, Yokthongwattana K, Juntawong P, Pokethitiyook P, et al. 2016. Increasing the triacylglycerol content in Dunaliella tertiolecta through isolation of starch-deficient mutants. J. Microbiol. Biotechnol. 26: 854-866. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, et al. 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78: 1-10. Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q. 2010. Chlamydomonas starchless mutant defective in ADPglucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 12: 387-391. Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, et al. 2014. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5: 3831. Iglesias AA, Charng Y, Ball S, Preiss J. 1994. Characterization of the kinetic, regulatory, and structural properties of ADPglucose pyrophosphorylase from Chlamydomonas reinhardtii. Plant Physiol. 104: 1287-1294. Klein U. 1987. Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol. 85: 892-897. Kuchitsu K, Tsuzuki M, Miyachi S. 1988. Changes of starch localization within the chloroplast induced by changes in CO2 concentration during growth of Chlamydomonas reinhardtii:independent regulation of pyrenoid starch and stroma starch. Plant Cell Physiol. 29: 1269-1278. Roeben A, Plitzko JM, Körner R, Böttcher UM, Siegers K, Hayer-Hartl M, et al. 2006. Structural basis for subunit assembly in UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. J. Mol. Biol. 364: 551-560. Kleczkowski LA, Randall DD, Blevins DG. 1987. Inhibition of spinach leaf NADPH (NADH)-glyoxylate reductase by acetohydroxamate, aminooxyacetate, and glycidate. Plant Physiol. 84: 619-623. Kim ZH, Park H, Lee CG. 2016. Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. J. Microbiol. Biotechnol. 26: 1098-1102. Lee HS, Kim ZH, Park H, Lee CG. 2016. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess. Biosyst. Eng. 39: 815-823. Kim ZH, Park H, Ryu YJ, Shin DW, Hong SJ, Tran HL, et al. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763-1773. Lee HS, Seo MW, Kim ZH, Lee CG. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. Enzyme Microb. Technol. 39: 447-452. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl. Microbiol. Biotechnol. 94: 1495-1503. Gonen-Zurgil Y, Carmeli-Schwartz Y, Sukenik A. 1996. Selective effect of the herbicide DCMU on unicellular algae - a potential tool to maintain monoalgal mass culture of Nannochloropsis. J. Appl. Phycol. 8: 415-419. Brearley CA, Hanke DE. 1993. Pathway of synthesis of 3,4and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza. L. Biochem. J. 290: 145-150. Villarejo A, Martínez F, Ramazanov Z. 1997. Effect of aminooxyacetate, an inhibitor blocking the glycolate pathway, on the induction of a CO2-concentrating mechanism and low-CO2-inducible polypeptides in Chlamydomonas reinhardtii (Chlorophyta). Eur. J. Phycol. 32: 141-145. Thompson GA. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302: 17-45. Zhan J, Hu H. 2016. Effects of nitrogen sources and C/N ratios on the lipid-producing potential of Chlorella sp. HQ. J. Microbiol. Biotechnol. 26: 1290-1302. Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, et al. 2012. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75: 50-59. Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, et al. 2 012. O il p rodu ction b y the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour. Technol. 114: 567-572. Schiff JA, Zeldin MH, Rubman J. 1967. Chlorophyll formation and photosynthetic competence in Euglena during lightinduced chloroplast development in the presence of 3,(3,4dichlorophenyl) 1,1-dimethyl urea (DCMU). Plant Physiol. 42: 1716-1725. Wang ST, Pan Y-Y, Liu CC, Chuang LT, Chen CNN. 2011. Characterization of a green microalga UTEX 2219-4: effects of photosynthesis and osmotic stress on oil body formation. Bot. Stud. 52: 305-312. Buchanan BB. 1980. Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol. 31: 341-374. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. 2009. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8: 1856-1868. Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J. 2012. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol. Biofuels 5: 1. Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B. 2016. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol. J. 14: 1649-1660. Muñoz FJ, Baroja-Fernández E, Morán-Zorzano MT, Viale AM, Etxeberria E, Alonso-Casajús N, et al. 2005. Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol. 46:1366-1376. Liang MH, Jiang JG. 2013. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52: 395-408. Sayre R. 2010. Microalgae: the potential for carbon capture. Bioscience 60: 722-727. Lloyd ND, Canvin DT, Culver DA. 1977. Photosynthesis and photorespiration in algae. Plant Physiol. 59: 936-940. Servaites JC, Ogren WL. 1977. Chemical inhibition of the glycolate pathway in soybean leaf cells. Plant Physiol. 60:461-466. Liu W, Peterson PE, Carter RJ, Zhou X, Langston JA, Fisher AJ, et al. 2004. Crystal structures of unbound and aminooxyacetatebound Escherichia coli ¥ã-aminobutyrate aminotransferase. Biochemistry 43: 10896-10905. Bloom AJ. 2015. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123: 117-128. Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ. 1988. Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can. J. Bot. 66: 2083-2097.
|
|
|
|
|