Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2017 ; 27(1): 1~8

AuthorAmparo Jiménez-Quero, Eric Pollet, Minjie Zhao, Eric Marchioni, Luc Averous, Vincent Phalip
AffiliationBioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 67087 Strasbourg, Cedex 2, France
TitleFungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production
PublicationInfo J. Microbiol. Biotechnol.2017 ; 27(1): 1~8
AbstractThe production of high-value chemicals from natural resources as an alternative for petroleum-based products is currently expanding in parallel with biorefinery. The use of lignocellulosic biomass as raw material is promising to achieve economic and environmental sustainability. Filamentous fungi, particularly Aspergillus species, are already used industrially to produce organic acid as well as many enzymes. The production of lignocellulose-degrading enzymes opens the possibility for direct fungal fermentation towards organic acids such as itaconic acid (IA) and fumaric acid (FA). These acids have wide-range applications and potentially addressable markets as platform chemicals. However, current technologies for the production of these compounds are mostly based on submerged fermentation. This work showed the capacity of two Aspergillus species (A. terreus and A. oryzae) to yield both acids by solid-state fermentation and simultaneous saccharification and fermentation. FA was optimally produced at by A. oryzae in simultaneous saccharification and fermentation (0.54 mg/g wheat bran). The yield of 0.11 mg IA/g biomass by A. oryzae is the highest reported in the literature for simultaneous solid-state fermentation without sugar supplements.
Full-Text(PDF)
Supplemental Data
KeywordsLignocellulosic biomass, solid-state fermentation, submerged fermentation, Aspergillus oryzae
References
  1. Goldberg I, Rokem JS, Pines O. 2006. Organic acids: old metabolites, new themes. J. Chem. Technol. Biotechnol. 81:1601-1611.
    CrossRef
  2. Werpy T, Holladay J, White J. 2004. Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas (No. 419907). DOE Scientific and Technical Information. US Department of Energy (DOE).
    Pubmed
  3. Magnuson JK, Lasure LL. 2004. Organic acid production by filamentous fungi, pp. 307-340. In Tkacz JS, Lange L (eds.). Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer, New York.
    CrossRef
  4. Okabe M, Lies D, Kanamasa S, Park EY. 2009. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84: 597-606.
    Pubmed CrossRef
  5. Willke T, Vorlop K-D. 2001. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 56: 289-295.
    Pubmed CrossRef
  6. Hevekerl A, Kuenz A, Vorlop K-D. 2014. Filamentous fungi in microtiter plates - an easy way to optimize itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 98: 6983-6989.
    Pubmed CrossRef
  7. Mondala AH. 2015. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J. Ind. Microbiol. Biotechnol. 42: 487-506.
    Pubmed CrossRef
  8. Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M. 2005. Green biorefineries: the green biorefinery concept –fundamentals and potential, pp. 253-294. In Kamm B, Gruber PR, Kamm M (eds.). Biorefineries - Industrial Processes and Products. Wiley-VCH Verlag GmbH.
    CrossRef
  9. Kawaguchi H, Hasunuma T, Ogino C, Kondo A. 2016. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr. Opin. Biotechnol. 42: 30-39.
    Pubmed CrossRef
  10. Lucia LA, Argyropoulos DS, Adamopoulos L, Gaspar AR. 2006. Chemicals and energy from biomass. Can. J. Chem. 84:960-970.
    CrossRef
  11. Kamm B, Kamm M, Schmidt M, Hirth T, Schulze M. 2005. Lignocellulose-based chemical products and product family trees, pp. 97-149. In Kamm B, Gruber PR, Kamm M (eds.). Biorefineries - Industrial Processes and Products. Wiley-VCH Verlag GmbH.
    CrossRef
  12. Menon V, Rao M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38: 522-550.
    CrossRef
  13. de Vries RP, Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65: 497-522.
    Pubmed CrossRef Pubmed Central
  14. Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M. 2007. Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour. Technol. 98: 3329-3337.
    Pubmed CrossRef
  15. El-Imam AMA, Kazeem MO, Odebisi MB, Oke MA, Abidoye AO. 2013. Production of itaconic acid from Jatropha curcas seed cake by Aspergillus terreus. Not. Sci. Biol. 5: 57-61.
  16. Xu Q, Li S, Fu Y, Tai C, Huang H. 2010. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour. Technol. 101: 6262-6264.
    Pubmed CrossRef
  17. Prévot V, Lopez M, Copinet E, Duchiron F. 2013. Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis. Bioresour. Technol. 129:690-693.
    Pubmed CrossRef
  18. Pandey A. 2001. Solid-State Fermentation in Biotechnology:Fundamentals and Applications. Asiatech Publishers, New Delhi.
  19. Hölker U, Höfer M, Lenz J. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-186.
    Pubmed CrossRef
  20. Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ. 2016. Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresour. Technol. 215: 334-345.
    Pubmed CrossRef
  21. Sørensen HR, Pedersen S, Jørgensen CT, Meyer AS. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing β-xylosidase and novel endo-1,4-β-xylanase and α-L-arabinofuranosidase activities. Biotechnol. Prog. 23: 100-107.
    Pubmed CrossRef
  22. Okuda J, Miwa I, Maeda K, Tokui K. 1977. Rapid and sensitive, colorimetric determination of the anomers of Dglucose with D-glucose oxidase, peroxidase, and mutarotase. Carbohydr. Res. 58: 267-270.
    CrossRef
  23. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  24. Jiménez-Quero A, Pollet E, Zhao M, Marchioni E, Averous L, Phalip V. 2016. Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. J. Microbiol. Biotechnol. 26: 1557-1565.
    Pubmed CrossRef
  25. Miron J, Yosef E, Ben-Ghedalia D. 2001. Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. J. Agric. Food Chem. 49: 2322-2326.
    Pubmed CrossRef
  26. Van Dyk JS, Pletschke BI. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes - factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458-1480.
    Pubmed CrossRef
  27. Begum MF, Alimon AR. 2011. Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production. Electron. J. Biotechnol. 14. DOI: 10.2225/vol14-issue5-fulltext-3.
    CrossRef
  28. Hendriks ATWM, Zeeman G. 2008. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18.
    Pubmed CrossRef
  29. Viktor MJ, Rose SH, van Zyl WH, Viljoen-Bloom M. 2013. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases. Biotechnol. Biofuels 6: 167.
    Pubmed CrossRef Pubmed Central
  30. West TP. 2008. Fumaric acid production by Rhizopus oryzae on corn distillers’ grains with solubles. Res. J. Microbiol. 3:35-40.
    CrossRef
  31. te Biesebeke R, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A, et al. 2002. Aspergillus oryzae in solid-state and submerged fermentations. Progress report on a multi-disciplinary project. FEMS Yeast Res. 2: 245-248.
    Pubmed CrossRef
  32. de Castro RJS, Sato HH. 2014. Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatal. Agric. Biotechnol. 3: 20-25.
    CrossRef
  33. Cao N, Xia Y, Gong CS, Tsao GT. 1997. Production of 2,3butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase. Appl. Biochem. Biotechnol. 63-65: 129-139.
    Pubmed CrossRef
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd