Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2016 ; 26(11): 1951~1964

AuthorJi-Hyun Nam, Jey-R. S. Ventura, Ick Tae Yeom, Yongwoo Lee, Deokjin Jahng
AffiliationDepartment of Environmental Engineering and Energy, Myongji University, Yongin 17058, Republic of Korea
TitleStructural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7
PublicationInfo J. Microbiol. Biotechnol.2016 ; 26(11): 1951~1964
Abstract1,4-Dioxane-degrading bacterial consortia were enriched from forest soil (FS) and activated sludge (AS) using a defined medium containing 1,4-dioxane as the sole carbon source. These two enrichments cultures appeared to have inducible tetrahydrofuran/dioxane and propane degradation enzymes. According to qPCR results on the 16S rRNA and soluble di-iron monooxygenase genes, the relative abundances of 1,4-dioxane-degrading bacteria to total bacteria in FS and AS were 29.4% and 57.8%, respectively. For FS, the cell growth yields (Y), maximum specific degradation rate (Vmax), and half-saturation concentration (Km) were 0.58 mg-protein/mg-dioxane, 0.037 mg-dioxane/mg-protein∙h, and 93.9 mg/l, respectively. For AS, Y, Vmax, and Km were 0.34 mg-protein/mg-dioxane, 0.078 mg-dioxane/mg-protein∙h, and 181.3 mg/l, respectively. These kinetics data of FS and AS were similar to previously reported values. Based on bacterial community analysis on 16S rRNA gene sequences of the two enrichment cultures, the FS consortium was identified to contain 38.3% of Mycobacterium and 10.6% of Afipia, similar to previously reported literature. Meanwhile, 49.5% of the AS consortium belonged to the candidate division TM7, which has never been reported to be involved in 1,4-dioxane biodegradation. However, recent studies suggested that TM7 bacteria were associated with degradation of non-biodegradable and hazardous materials. Therefore, our results showed that previously unknown 1,4-dioxane-degrading bacteria might play an important role in enriched AS. Although the metabolic capability and ecophysiological significance of the predominant TM7 bacteria in AS enrichment culture remain unclear, our data reveal hidden characteristics of the TM7 phylum and provide a perspective for studying this previously uncultured phylotype.
Full-Text(PDF)
Keywords1,4-Dioxane degrading bacterial consortia, candidate division TM7, Mycobacterium, Afipia, kinetic parameters, soluble di-iron monooxygenase
References
  1. Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas AM, Novoa B. 2009. Bacterial communities from shoreline environments (Costa da Morte, Northwestern Spain) affected by the Prestige oil spill. Appl. Environ. Microbiol. 75: 3407-3418.
    Pubmed CrossRef Pubmed Central
  2. Bernhardt D, Diekmann H. 1991. Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain. Appl. Microbiol. Biotechnol. 36: 120-123.
    Pubmed CrossRef
  3. Burback BL, Perry JJ. 1993. Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl. Environ. Microbiol. 59: 1025-1029.
    Pubmed Pubmed Central
  4. Coleman HM, Vimonses V, Leslie G, Amal R. 2007. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. J. Hazard. Mater. 146: 496-501.
    Pubmed CrossRef
  5. Coleman NV, Bui NB, Holmes AJ. 2006. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ. Microbiol. 8: 1228-1239.
    Pubmed CrossRef
  6. Connon SA, Tovanabootr A, Dolan M, Vergin K, Giovannoni SJ, Semprini L. 2005. Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethenecontaminated groundwater. Environ. Microbiol. 7: 165-178.
    Pubmed CrossRef
  7. Ding GC, Heuer H, Smalla K. 2012. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front. Microbiol. 3: Article 290.
    Pubmed CrossRef Pubmed Central
  8. Dinis JM, Barton DE, Ghadiri J, Surendar D, Reddy K, Velasquez F, et al. 2011. In search of an uncultured humanassociated TM7 bacterium in the environment. PLoS One 6:e21280.
    Pubmed CrossRef Pubmed Central
  9. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
    CrossRef
  10. Findlay M, Smoler D, Fogel S. 2007. Dioxane-degrading propanotrophs for in-situ remediation. In: Battelle Conference:In Situ and On-Site Bioremediation Symposium, Baltimore, Maryland, USA.
  11. Gedalanga PB, Pornwongthong P, Mora R, Chiang SY, Baldwin B, Ogles D, Mahendra S. 2014. Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Appl. Environ. Microbiol. 80: 3209-3218.
    Pubmed CrossRef Pubmed Central
  12. Grady CPL, Sock SM, Cowan RM. 1997. Biotreatability kinetics. Biotechnology in the Sustainable Environment. In Sayler GS, Sanseverino J, Davis KL (eds.). Plenum Press, New York, USA.
  13. Gómez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. 2007. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J. Bacteriol. 189: 5705-5715.
    Pubmed CrossRef Pubmed Central
  14. Garrity GM, Brenner DJ, Krieg NR, Staley JT. 2005. Bergey’s Manual of Systematic Bacteriology; Volume Two: The Proteobacteria;Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, USA.
  15. Han JS, So MH, Kim CG. 2009. Optimization of biological wastewater treatment conditions for 1,4-dioxane decomposition in polyester manufacturing processes. Water Sci. Technol. 59:995-1002.
    Pubmed CrossRef
  16. Hanada A, Kurogi T, Giang NM, Yamada T, Kamimoto Y, Kiso Y, Hiraishi A. 2014. Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors. Microbes Environ. 29: 353-362.
    Pubmed CrossRef Pubmed Central
  17. Hugenholtz P, Tyson GW, Webb RI, Wagner AM, Blackall LL. 2001. Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl. Environ. Microbiol. 67: 411-419.
    Pubmed CrossRef Pubmed Central
  18. Kampfer P, Kohlweyer U, Thiemer B, Andreesen JR. 2006. Pseudonocardia tetrahydrofuranoxydans sp. nov. Int. J. Syst. Evol. Microbiol. 56: 1535-1538.
    Pubmed CrossRef
  19. Kim YM, Jeon JR, Murugesan K, Kim EJ, Chang YS. 2009. Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation 20: 511-519.
    Pubmed CrossRef
  20. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
    Pubmed CrossRef
  21. Kohlweyer U, Thiemer B, Schrader T, Andreesen JR. 2000. Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1. FEMS Microbiol. Lett. 186: 301-306.
    Pubmed CrossRef
  22. Krieg NR, Parte A, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, et al. 2011. Bergey’s Manual of Systematic Bacteriology:Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Springer Science & Business Media.
  23. Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.). Nucleic Acid Techniques In Bacterial Systematics. John Wiley and Sons, Chichester, UK.
  24. Laplante K, Sébastien B, Derome N. 2013. Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation. Evol. Appl. 6: 643-659.
    Pubmed CrossRef Pubmed Central
  25. Leahy JG, Batchelor PJ, Morcomb SM. 2003. Evolution of the soluble diiron monooxygenases. FEMS Microbiol. Rev. 27:449-479.
    CrossRef
  26. Li M, Mathieu J, Yang Y, Fiorenza S, Deng Y, He Z, et al. 2013. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4dioxane. Environ. Sci. Technol. 47: 9950-9958.
    Pubmed CrossRef
  27. Lippincott D, Streger SH, Schaefer CE, Hinkle J, Stormo J, Steffan RJ. 2015. Bioaugmentation and propane biosparging for In Situ Biodegradation Of 1,4-dioxane. Ground Water Monit. Remediat. 35: 81-92.
  28. Liz JAZE, Jan-Roblero J, de la Serna JZD, de León AVP, Hernández-Rodríguez C. 2009. Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. World J. Microbiol. Biotechnol. 25: 165-170.
    CrossRef
  29. Luo C, Xie S, Sun W, Li X, Cupples AM. 2009. Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl. Environ. Microbiol. 75: 4644-4647.
    Pubmed CrossRef Pubmed Central
  30. Mahendra S, Alvarez-Cohen L. 2005. Pseudonocardia dioxanivorans sp nov., a novel actinomycete that grows on 1,4-dioxane. Int. J. Syst. Evol. Microbiol. 55: 593-598.
    Pubmed CrossRef
  31. Mahendra S, Alvarez-Cohen L. 2006. Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ. Sci. Technol. 40: 5435-5442.
    Pubmed CrossRef
  32. Mohr TKG. 2001. Solvent Stabilizers. Santa Clara Valley Water District, San Jose, California, USA.
  33. Mohr TKG, Stickney JA, DiGuiseppi WH. 2010. Environmental Investigation and Remediation: 1,4-Dioxane and Other Solvent Stabilizers. CRC Press, Boca Raton, Florida, USA.
    CrossRef
  34. Muyzer G, De Waal EC, Uitterlinden AG. 1993. P rofiling o f complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
    Pubmed Pubmed Central
  35. Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Morita M. 2005. Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus. Appl. Environ. Microbiol. 71: 1254-1258.
    Pubmed CrossRef Pubmed Central
  36. Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York, USA.
    Pubmed Central
  37. Parales RE, Adamus JE, White N, May HD. 1994. Degradation of 1,4-dioxane by an actinomycete in pure culture. Appl. Environ. Microbiol. 60: 4527-4530.
    Pubmed Pubmed Central
  38. Popoola AV. 1992. Mechanism of reaction involving the formation of dioxane byproduct during the production of poly(ethylene terephthalate). J. Appl. Polym. Sci. 43: 1875-1877.
    CrossRef
  39. Roy D, Anagnostu G, Chaphalkar P. 1994. Biodegradation of dioxane and diglyme in industrial waste. J. Environ. Sci. Health A Environ. Sci. Eng. 29: 129-147.
  40. Sei K, Kakinoki T, Inoue D, Soda S, Fujita M, Ike M. 2010. Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples. Biodegradation 21:585-591.
    Pubmed CrossRef
  41. Sei K, Miyagaki K, Kakinoki T, Fukugasako K, Inoue D, Ike M. 2013. Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source. Biodegradation 24: 665-674.
    Pubmed CrossRef
  42. So MH, Han JS, Han TH, Seo JW, Kim CG. 2009. Decomposition of 1,4-dioxane by photo-Fenton oxidation coupled with activated sludge in a polyester manufacturing process. Water Sci. Technol. 59: 1003-1009.
    Pubmed CrossRef
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.
    Pubmed CrossRef Pubmed Central
  44. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
    Pubmed CrossRef Pubmed Central
  45. Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ. 2006. Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478. Appl. Environ. Microbiol. 72: 5218-5224.
    Pubmed CrossRef Pubmed Central
  46. Winsley TJ, Snape I, McKinlay J, Stark J, van Dorst JM, Ji M, et al. 2014. The ecological controls on the prevalence of candidate division TM7 in polar regions. Front. Microbiol. 5: Article 345.
    Pubmed CrossRef Pubmed Central
  47. Xie S , Sun W, L uo C , Cupples A M. 2 011. N ovel a erobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 22: 71-81.
    Pubmed CrossRef
  48. Zenker MJ, Borden RC, Barlaz MA. 2000. Mineralization of 1,4-dioxane in the presence of a structural analog. Biodegradation 11: 239-246.
    Pubmed CrossRef
  49. Zenker MJ, Borden RC, Barlaz MA. 2002. Modeling cometabolism of cyclic ethers. Environ. Eng. Sci. 19: 215-228.
    CrossRef
  50. Zenker MJ, Borden RC, Barlaz MA. 2003. Occurrence and treatment of 1,4-dioxane in aqueous environments. Environ. Eng. Sci. 20: 423-432.
    CrossRef
  51. Zenker MJ, Borden RC, Barlaz MA. 2004. Biodegradation of 1,4-dioxane using trickling filter. J. Environ. Eng. 130: 926-931.
    CrossRef
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd