Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.
Journal of Microbiology and Biotechnology
Condition  Expression
When you enter More than two words, please use ‘and , or’ operation by means of putting ‘,(Comma Mark)’ between each word.

2014 ; 24(12): 1707~1718

AuthorJae-Hyung Ahn, Woo-Suk Jeong, Min-Young Choi, Byung-Yong Kim, Jaekyeong Song, Hang-Yeon Weon
AffiliationAgricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Republic of Korea
TitlePhylogenetic Diversity of Dominant Bacterial and Archaeal Communities in Plant-Microbial Fuel Cells Using Rice Plants
PublicationInfo J. Microbiol. Biotechnol.2014 ; 24(12): 1707~1718
AbstractIn this study, the phylogenetic diversities of bacterial and archaeal communities in a plantmicrobial fuel cell (P-MFC) were investigated together with the environmental parameters, affecting its performance by using rice as a model plant. The beneficial effect of the plant appeared only during a certain period of the rice-growing season, at which point the maximum power density was approximately 3-fold higher with rice plants. The temperature, electrical conductivity (EC), and pH in the cathodic and anodic compartments changed considerably during the rice-growing season, and a higher temperature, reduced difference in pH between the cathodic and anodic compartments, and higher EC were advantageous to the performance of the P-MFC. A 16S rRNA pyrosequencing analysis showed that the 16S rRNAs of Deltaproteobacteria and those of Gammaproteobacteria were enriched on the anodes and the cathodes, respectively, when the electrical circuit was connected. At the species level, the operational taxonomic units (OTUs) related to Rhizobiales, Geobacter, Myxococcus, Deferrisoma, and Desulfobulbus were enriched on the anodes, while an OTU related to Acidiferrobacter thiooxydans occupied the highest proportion on the cathodes and occurred only when the circuit was connected. Furthermore, the connection of the electrical circuit decreased the abundance of 16S rRNAs of acetotrophic methanogens and increased that of hydrogenotrophic methanogens. The control of these physicochemical and microbiological factors is expected to be able to improve the performance of P-MFCs.
Full-Text(PDF)
Keywordsplant-microbial fuel cell, bacterial community, archaeal community, 16S rRNA
References
  1. Ahn JH, Choi MY, Kim BY, Lee JS, Song J, Kim GY, Weon HY. 2014. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil. Microb. Ecol. 68: 271-283.
    Pubmed CrossRef
  2. Aklujkar M, Young N, Holmes D, Chavan M, Risso C, Kiss H, et al. 2010. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. BMC Genomics. 11: 490.
    Pubmed CrossRef
  3. Arends JA, Blondeel E, Tennison S, Boon N, Verstraete W. 2012. Suitability of granular carbon as an anode material for sediment microbial fuel cells. J. Soils Sediments 12: 1197-1206.
    CrossRef
  4. Arends JA, Speeckaert J, Blondeel E, De Vrieze J, Boeckx P, Verstraete W, et al. 2014. Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl. Microbiol. Biotechnol. 98: 3205-3217.
    Pubmed CrossRef
  5. Bombelli P, Iyer D, Covshoff S, McCormick A, Yunus K, Hibberd J, et al. 2013. Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems. Appl. Microbiol. Biotechnol. 97: 429-438.
    Pubmed CrossRef
  6. Bond DR, Holmes DE, Tender LM, Lovley DR. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485.
    Pubmed CrossRef
  7. Carbajosa S, Malki M, Caillard R, Lopez MF, Palomares FJ, Martín-Gago JA, et al. 2010. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosens. Bioelectron. 26: 877-880.
    Pubmed CrossRef
  8. Chiranjeevi P, Chandra R, Mohan SV. 2013. Ecologically engineered submerged and emergent macrophyte based system: an integrated eco-electrogenic design for harnessing power with simultaneous wastewater treatment. Ecol. Eng. 51: 181-190.
    CrossRef
  9. Chiranjeevi P, Mohanakrishna G, Venkata Mohan S. 2012. Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration. Bioresour. Technol. 124: 364-370.
    Pubmed CrossRef
  10. Chun J, Kim K, Lee JH, Choi Y. 2010. The analysis of oral microbial communities of wild-type and Toll-like receptor 2deficient mice using a 454 GS FLX titanium pyrosequencer. BMC Microbiol. 10: 101.
    Pubmed CrossRef
  11. Conrad R. 2007. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96: 1-63.
    CrossRef
  12. De Schamphelaire L, Boeckx P, Verstraete W. 2010. Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl. Microbiol. Biotechnol. 87: 1675-1687.
    Pubmed CrossRef
  13. De Schamphelaire L, Bossche LVd, Dang HS, Höfte M, Boon N, Rabaey K, Verstraete W. 2008. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ. Sci. Technol. 42: 3053-3058.
    Pubmed CrossRef
  14. De Schamphelaire L, Cabezas A, Marzorati M, Friedrich MW, Boon N, Verstraete W. 2010. Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Appl. Environ. Microbiol. 76: 2002-2008.
    Pubmed CrossRef
  15. De Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstraete W. 2008. Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microb. Biotechnol. 1: 446-462.
    Pubmed CrossRef
  16. Deng H, Chen Z, Zhao F. 2012. Energy from plants and microorganisms: progress in plant–microbial fuel cells. ChemSusChem. 5: 1006-1011.
    Pubmed CrossRef
  17. Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M. 2012. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62: 1902-1907.
    Pubmed CrossRef
  18. Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR. 2009. Novel strategy for three-dimensional realtime imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energ. Environ. Sci. 2: 113-119.
    CrossRef
  19. Gil G -C, Chang I-S, K im BH, K im M , Jang J -K , Park H S, Kim HJ. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18:327-334.
    CrossRef
  20. Hallberg K, Hedrich S, Johnson DB. 2011. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermotolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 15: 271-279.
    Pubmed CrossRef
  21. He Z, Angenent LT. 2006. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18: 2009-2015.
    CrossRef
  22. Helder M, Strik D, Hamelers H, Buisman C. 2012. The flatplate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnol. Biofuels 5: 1-11.
    Pubmed CrossRef
  23. Holmes DE, Bond DR, Lovley DR. 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70: 1234-1237.
    Pubmed CrossRef
  24. Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48: 178-190.
    Pubmed CrossRef
  25. Holmes DE, O'Neil RA, Vrionis HA, N'Guessan LA, OrtizBernad I, Larrahondo MJ, et al. 2007. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)reducing subsurface environments. ISME J. 1: 663-677.
    Pubmed CrossRef
  26. Hong SW, Chang IS, Choi YS, Chung TH. 2009. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresour. Technol. 100: 3029-3035.
    Pubmed CrossRef
  27. Hur M, Kim Y, Song HR, Kim JM, Choi YI, Yi H. 2011. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl. Environ. Microbiol. 77: 7611-7619.
    Pubmed CrossRef
  28. Ishii Si, Hotta Y, Watanabe K. 2008. Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci. Biotechnol. Biochem. 72: 286-294.
    Pubmed CrossRef
  29. Kaku N, Yonezawa N, Kodama Y, Watanabe K. 2008. Plant/microbe cooperation for electricity generation in a rice paddy field. Appl. Microbiol. Biotechnol. 79: 43-49.
    Pubmed CrossRef
  30. Kato S, Hashimoto K, Watanabe K. 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA 109: 10042-10046.
    Pubmed CrossRef
  31. K endall M M, W ardlaw G D, Tang CF, Bonin A S, L iu Y , Valentine DL. 2007. Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl. Environ. Microbiol. 73: 407-414.
  32. Kiely PD, Regan JM, Logan BE. 2011. The electric picnic:synergistic requirements for exoelectrogenic microbial communities. Curr. Opin. Biotechnol. 22: 378-385.
    Pubmed CrossRef
  33. Kodama Y, Watanabe K. 2011. Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell. Int. J. Syst. Evol. Microbiol. 61: 1781-1785.
    Pubmed CrossRef
  34. Kouzuma A, Kasai T, Nakagawa G, Yamamuro A, Abe T, Watanabe K. 2013. Comparative metagenomics of anodeassociated microbiomes developed in rice paddy-field microbial fuel cells. PLoS One 8: e77443.
    Pubmed CrossRef
  35. Kuever J, Rainey FA, Widdel F. 2005. Family II. Desulfobulbaceae fam. nov., pp. 988-999. In B renner D J, K rieg N R, G arrity GM, Staley JT, Boone DR, Vos P, et al. (eds.). Bergey's Manual of Systematic Bacteriology. Springer, New York.
  36. Liu H, Cheng S, Logan BE. 2005. Power generation in fedbatch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39: 5488-5493.
    Pubmed CrossRef
  37. Liu S, Song H, Li X, Yang F. 2013. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int. J. Photoenergy 2013: 10.
    CrossRef
  38. Liu S, Song H, Wei S, Yang F, Li X. 2014. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland —Microbial fuel cell systems. Bioresour. Technol. 166: 575-583.
    Pubmed CrossRef
  39. Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7: 375-381.
    Pubmed CrossRef
  40. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, et al. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40: 5181-5192.
    Pubmed CrossRef
  41. Logan BE, Regan JM. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14:512-518.
    Pubmed CrossRef
  42. Nakasono S, Matsumoto N, Saiki H. 1997. Electrochemical cultivation of Thiobacillus ferrooxidans by potential control. Bioelectrochem. Bioener. 43: 61-66.
    CrossRef
  43. Popat SC, Ki D, Rittmann BE, Torres CI. 2012. Importance of OH transport from cathodes in microbial fuel cells. ChemSusChem 5: 1071-1079.
    Pubmed CrossRef
  44. Rozendal RA, Hamelers HVM, Buisman CJN. 2006. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 40: 5206-5211.
    Pubmed CrossRef
  45. Sanford RA, Cole JR, Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic Myxobacterium. Appl. Environ. Microbiol. 68: 893-900.
    Pubmed CrossRef
  46. Schamphelaire LD, Bossche LVd, Dang HS, Höfte M, Boon N, Rabaey K, Verstraete W. 2008. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ. Sci. Technol. 42: 3053-3058.
    Pubmed CrossRef
  47. Shehab N, Li D, Amy G, Logan B, Saikaly P. 2013. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Appl. Microbiol. Biotechnol. 97: 9885-9895.
    Pubmed CrossRef
  48. Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, Slobodkin AI. 2012. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int. J. Syst. Evol. Microbiol. 62: 2463-2468.
    Pubmed CrossRef
  49. Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN. 2008. Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energ. Res. 32: 870-876.
    CrossRef
  50. Strik DPBTB, Picot M, Buisman CJN, Barrière F. 2013. pH and temperature determine performance of oxygen reducing biocathodes. Electroanalysis 25: 652-655.
    CrossRef
  51. Strik DPBTB, Timmers RA, Helder M, Steinbusch KJJ, Hamelers HVM, Buisman CJN. 2011. Microbial solar cells:applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29: 41-49.
    Pubmed CrossRef
  52. Sun Y, Wei J, Liang P, Huang X. 2012. Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express 2: 21.
    Pubmed CrossRef
  53. Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN. 2013. Electricity generation by a novel design tubular plant microbial fuel cell. Biomass Bioenergy 51: 60-67.
    CrossRef
  54. Torres CI, Kato Marcus A, Rittmann BE. 2008. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 100: 872-881.
    Pubmed CrossRef
  55. Xia X, Sun Y, Liang P, Huang X. 2012. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization. Bioresour. Technol. 120:26-33.
    Pubmed CrossRef
  56. Zhang Y, Sun J, Hu Y, Li S, Xu Q. 2012. Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrogen Energy 37: 16935-16942.
    CrossRef
Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang.co., Ltd