전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Hoffart E, Grenz S, Lange J, Nitschel R, Muller F, Schwentner A, et al. 2017. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Appl. Eviron. Mcrobiol. 83: e01614-17.
    Pubmed PMC
  2. Becker W, Wimberger F, Zangger K. 2019. Vibrio natriegens: An alternative expression system for the high-yield production of isotopically labeled proteins. Biochemistry 58: 2799-2803.
    Pubmed
  3. Lee HH, Ostrov N, Wong BG, Gold MA, Khalil AS, Church GM. 2019. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nat. Mcrobiol. 4: 1105-1113.
    Pubmed
  4. Lee HH, Ostrov N, Wong BG, Gold MA, Khalil AS, Church GM. 2016. Vibrio natriegens, a new genomic powerhouse. bioRxiv. 058487.
  5. Weinstock MT, Hesek ED, Wilson CM, Gibson DG. 2016. Vibrio natriegens as a fast-growing host for molecular biology. Nat.Methods. 13: 849-851.
    Pubmed
  6. Liu L, Yang H, Shin HD, Li J, Du G, Chen J. 2013. Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection. Appl. Mcrobiol. Biotehnology. 97: 9597-9608.
    Pubmed
  7. Lee MJ, Kim P. 2018. Recombinant protein expression system in Corynebacterium glutamicum and its application. Front. Microbiol. 9: 2523.
    Pubmed PMC
  8. Graf M, Haas T, Müller F, Buchmann A, Harm-Bekbenbetova J, Freund A, et al. 2019. Continuous Adaptive evolution of a fastgrowing Corynebacterium glutamicum strain independent of protocatechuate. Front. Microbiol. 10: 1648-1648.
    Pubmed PMC
  9. Paalme T, Elken R, Kahru A, Vanatalu K, Vilu R. 1997. The growth rate control in Escherichia coli at near to maximum growth rates:the A-stat approach. Antonie Van Leeuwenhoek. 71: 217-230.
    Pubmed
  10. Lee S, Kim P. 2020. Current status and applications of adaptive laboratory evolution in industrial microorganisms. J. Microbiol. Biotechnol. 30: 793-803.
    Pubmed
  11. Pfeifer E, Gatgens C, Polen T, Frunzke J. 2017. Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci. Rep. 7: 16780.
    Pubmed PMC
  12. Wang Z, Liu J, Chen L, Zeng AP, Solem C, Jensen PR. 2018. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum. Metab. Eng. 48: 1-12.
    Pubmed
  13. Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, et al. 2015. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl. Environ. Microbiol. 81: 2284-2298.
    Pubmed PMC
  14. Lee J, Saddler JN, Um Y, Woo HM. 2016. Adaptive evolution and metabolic engineering of a cellobiose- and xylose-negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microbial. Cell Fact. 15: 20.
    Pubmed PMC
  15. Li Z, Shen YP, Jiang XL, Feng LS, Liu JZ. 2018. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. J. Ind. Microbiol. Biotechnol. 45: 123-139.
    Pubmed
  16. Sambrook J, Russell DW. 2001. Molecular cloning : A Laboratory Manual, pp. 157-210, 4th Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  17. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51-59.
  18. Osten CHvd, Gioannetti C, Sinskey AJ. 1989. Design of a defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol. Lett. 11: 11-16.
  19. Na Y-A, Lee J-Y, Bang W-J, Lee HJ, Choi S-I, Kwon S-K, et al. 2015. Growth retardation of Escherichia coli by artificial increase of intracellular ATP. J. Ind. Microbiol. Biotechnol. 42: 915-924.
    Pubmed
  20. López EF, Gómez EF. 1996. Simultaneous determination of the major organic acids, sugars, glycerol, and ethanol by HPLC in grape musts and white wines. J. Chromatogr. Sci. 34: 254-257.
  21. Fujimoto M, Yamada A, Kurosawa J, Kawata A, Beppu T, Takano H, et al. 2012. Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces. Microbial. Biotechnol. 5: 477-488.
    Pubmed PMC
  22. Frangipani E, Haas D. 2009. Copper acquisition by the SenC protein regulates aerobic respiration in Pseudomonas aeruginosa PAO1. FEMS Microbiol. Lett. 298: 234-240.
    Pubmed
  23. Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, et al. 2016. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536: 165-170.
    Pubmed PMC
  24. Lee S. 2020. Effects of NCgl1610 operon encoding copper-related genes on growth rate of Corynebacterium glutamicum through an activation in electron transport chain under oxidative stress. master's thesis. the Catholic University of Korea.
  25. Morosov X, Davoudi CF, Baumgart M, Brocker M, Bott M. 2018. The copper-deprivation stimulon of Corynebacterium glutamicum comprises proteins for biogenesis of the actinobacterial cytochrome bc1-aa3 supercomplex. J. Biol. Chem. 293: 15628-15640.
    Pubmed PMC
  26. Petrus ML, Vijgenboom E, Chaplin AK, Worrall JA, van Wezel GP, Claessen D. 2016. The DyP-type peroxidase DtpA is a Tatsubstrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biol. 6: 150149.
    Pubmed PMC
  27. Jiang W, Hou Y, Inouye M. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272:196-202.
    Pubmed
  28. Das G, Varshney U. 2006. Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis. Microbiology 152: 2191-2195.
    Pubmed
  29. Maitra A, Dill KA. 2015. Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc. Natl. Acad. Sci USA. 112: 406-411.
    Pubmed PMC
  30. Lee JY, Seo J, Kim ES, Lee HS, Kim P. 2013. Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol. Lett. 35: 709-717.
    Pubmed
  31. Miethke M, Monteferrante CG, Marahiel MA, van Dijl JM. 2013. The Bacillus subtilis EfeUOB transporter is essential for highaffinity acquisition of ferrous and ferric iron. Biochim. Biophys. Acta 1833: 2267-2278.
    Pubmed
  32. Kim H-J, Kwon YD, Lee SY, Kim P. 2012. An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Appl. Microbiol. Biotechnol. 94: 1079-1086.
    Pubmed
  33. Kim SH, Kim MS, Lee BY, Lee PC. 2016. Generation of structurally novel short carotenoids and study of their biological activity. Sci. Rep. 6: 21987.
    Pubmed PMC
  34. Park SD LS, Park IH, Choi JS, Jeong WK. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. Microbiol. Biotechnol. 14: 789-795.
  35. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73.